Computational Biophysics Approaches to Mechanosensing

Rafael C. Bernardi

Department of Physics at Auburn University NIH Center for Macromolecular Modeling and Bioinformatics compbiophysics.auburn.edu rcbernardi@auburn.edu @rafaelcbernardi

Single Molecule Force Spectroscopy

- Atomic Force Microscopy
- Optical Tweezers

. . .

Rafael C. Bernardi

ernardi@auburn.edu

- Magnetic Tweezers
- Centrifugal Force Microcopy

Hermann Gaub (LMU)

EL Florin, et. al.; Science, 1994 GU Lee, et. al.; Langmuir, 1994

2

Steered Molecular Dynamics Simulations

- Molecular Dynamics Simulations
- Pulling with a spring (Hooke's Law): $F = -k \cdot \Delta x$

In Silico Single Molecule Force Spectroscopy

- Pulling and anchoring points mimic experiments.
- Thousands of simulation replicas.
- Dozens to hundreds of microseconds of all-atom SMD.
- Dozens of terabytes of trajectory data.
- Dynamic Network Analysis.
- Dimensionality reduction tools.
- Al tools for mutation prediction.

MCB-2143787 CAREER: In Silico Single-Molecule Force Spectroscopy

LF Milles, K Schulten, HE Gaub, <u>RC Bernardi</u>; **Molecular mechanism of extreme** mechanostability in a pathogen adhesin. Science, 2018

Molecular Dynamics Simulations

Molecular Dynamics Simulations Software

R24 GM-145965 Resource for Macromolecular Modeling and Visualization

VMD Visual Molecular Dynamics

300,000 registered users;

M Spivak, …, <u>RC Bernardi</u>, E Tajkhorshid; **VMD as a platform for interactive small molecule preparation and visualization in quantum and classical simulations.** JCIM, 2023 JC Phillips, …, <u>RC Bernardi</u>, et. al.; **Scalable molecular dynamics on CPU and GPU architectures with NAMD.** The Journal of Chemical Physics, 2020 MCR Melo*, <u>RC Bernardi</u>*, et. al.; **NAMD goes quantum: An integrative suite for hybrid simulations.** Nature Methods, 2018 JV Ribeiro*, <u>RC Bernardi</u>*, et. al.; **QwikMD: Integrative Molecular Dynamics Toolkit for Novices and Experts.** Scientific Reports, 2016 W Humphrey, et. al.; Journal of Molecular Graphics, 1996

Molecular Dynamics Simulations Software

VMD 2.0-alpha: Release December 2024

New Interface

		VMD Main			- ×
File Molecule	Graphics	Display	Mouse	Extensi	ons Helj
B	0	• *	Tk	6	QwikM
IDTADFM	olecule		Atoms	Frame	s Vol
0 TADF1	bve	1	3200	28	0
I ADF5	XII3	· · ·	2207	1	0
	2 C V 2012	102 1025		1211 B. 1221	
Drawing Metho	od Mat Opaque	ctions Tr erial e \$	ajectory Coloring Name	Method	
Drawing Metho Licorice	od Mat Opaque Color	ctions Tr erial e ↓ Selectio	ajectory Coloring Name on	Method	
Drawing Metho Licorice	od Mat Opaque Color Structure	ctions Tr erial e \$ Selection protein	ajectory Coloring Name on	Method	
Drawing Metho Licorice : Style NewCartoon Licorice	otyle Sele d Mat Opaque Color Structure Name	ctions Tr erial e \$ Selectio protein not pro	Coloring Name Name	Method	
Graphics Drawing Metho Licorice 1 Style 1 NewCartoon 1 Licorice 1	style Sele d Mat Opaque Color Structure Name election: no	ctions Tr erial e ¢ Selection protein not pro	ajectory Coloring Name on tein	Periodic Method	
Graphics Drawing Metho Licorice 4 Style 4 NewCartoon 1 Licorice 5 Rep: 9 27 9	style Sele d Mat Opaque Color Structure Name	ctions Tr erial e \$ Selectio protein not pro	ajectory Coloring Name on Stein	Periodic Method	

NAMD 3.0:

Released June 2024

- GPU-resident
- Support for Multi-GPU
- Full capability of NAMD 2

Secondary Structure Representation / Live Rendering

R24 GM-145965 Resource for Macromolecular Modeling and Visualization

Surface Representation

QM Visualization

onal Institutes of Health

Mechanostability and Mechanoactive Biomolecules

8

9

Molecular Mechanisms of Mechanostability

Catch-Bond Mechanism Ultra-mechanostable Protein Complex Cohesin:Dockerin

Nat. Comm., 2014 & 2020; Nano Letters, 2015; JACS 2017 & 2019

Hermann Gaub (LMU)

Michael Nash (U. Basel / ETH)

Hermann Gaub (LMU)

Jan Lipfert

(Utrecht U.)

David Alsteens (CU Louvain)

Evolution of Mechanostability Coronavirus SARS-CoV-2

PNAS, 2022; Nature Nanotechnology, 2024; Nature Communications, 2024

Molecular Mechanisms of Mechanostability

Ulla Pentikäinen (U. Turku0

Mutations in Filamins that are associated with genetic diseases Scientific Reports, 2017; Structure, 2019

Ionel Popa (U. Wisconsin)

Mutations in Titin that are associated with genetic diseases

In preparation

David Alsteens (CU Louvain)

> Influence of Co-factors Reovirus Sigma1:JAM-A

> > PNAS, 2023

anchor

pulling

Michael Nash (U. Basel / ETH)

> Epitope Mapping Mechano-anisotropy Affibody:PD-L1 JACS, 2024; ACS Nano 2024

Mechano-anisotropy Strepavidin:Biotin

Nano Letters, 2019; Science Adv. 2020

Hermann Gaub (LMU)

But why are adhesins so different and so interesting?

Staphylococci Biofilm Formation

MSCRAMMs

Microbial Surface Components Recognizing Adhesive Matrix Molecules

Human targets include Fibrinogen (Fg, all chains), Fibronectin (Fn), Keratin, Collagen, Elastin, Complement Factor H, ...

MSCRAMMs

Microbial Surface Components Recognizing Adhesive Matrix Molecules

Adhesins

Adhesins

The "Dock, Lock, and Latch" (DLL) Mechanism

The "Dock, Lock, and Latch" (DLL) Mechanism

The Hyperstrong Bond

• AFM-based SMFS

Rafael C. Bernardi

rcbernardi@auburn.edu

LF Milles, K Schulten, HE Gaub, <u>RC Bernardi</u>; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018 DEB Gomes, ..., <u>RC Bernardi</u>; Bridging the gap between in vitro and in silico single-molecule force spectroscopy. bioRxiv, 2022 22

Resilience to mechanical loads is due to a network of hydrogen bonds.

A bond with a twist!

The corkscrew shape makes the complex hyperstable

FgB

Is this a hyperstable catch-bond?

Adapted from: YF Dufrêne & A Persat; Nature Reviews Microbiology, 2020

Molecular Finger Trap Puzzle

Common Affinity High Mechanostability

Network Edges as Intermolecular Interactions Descriptors

Marcelo CR Melo (now at Colorado State)

Connecting to human

extracellular matrix

Connecting

to bacterium

26

stabilization during bacterial infections. JACS, 2023

How these adhesins interact with cells?

SdrD Interaction with Corneocytes are at Cellular Junction Points

SrdD mediates Staphylococcus Aureus binding to Corneocytes

DSG-1 as the SdrD target in Corneocytes

SdrD:DSG-1 Interaction

B-domains Unfolding Pattern

The proximal peptide is probably the target of SdrD

Single Molecule Force Spectroscopy in vitro and in silico

bernardi@auburn.edu

Simulation Details:

- System Size: ~200,000 atoms
- Simulation Time:
 - 107 μ s all-atom MD (aa-MD)
 - 760 µs coarse-grained MD (CG-MD) Gromacs
- NAMD 3.0:
 - CHARMM 36 force field
 - 4 fs timestep
 - 12 Å cutoff for long-range interactions + PME

Performance:

- Lab DGX-A100 Cluster:
 - 265 ns/day per GPU (2.1 μs/day)
- NCSA Delta (4 A-100 GPUs):
 - 271 ns/day per GPU (1.1 μs/day total)
- NCSA Delta AI (GH200 Nodes with 4 GPUs):
 - 381 ns/day per GPU (1.5 μs/day total)

π-stacking at the junction residues is a key distinguishing feature of the SdrD:DSG-1 complex when compared to the SdrG:Fgβ complex.

Network Analysis of the Hyper Mechanostable SdrD:DSG-1 Complex

Calcium Regulation of SdrD:DSG-1 Complex

cbernardi@auburn.edu

Is the number of B-domains Influencing the Mechanostability of the A-domain?

How does calcium affect infections?

SdrD:(Atopic Dermatitis – AD cells)

AD-cells are More Susceptible to SdrD Binding

SCFS experiments with AD corneocytes show increased adhesion frequencies at higher rupture forces, likely due to the abnormal, diffuse distribution of DSG-1 on the cell surface

Evolution of Mechanostability

How Adhesin's Bonds Became Hyperstable

Priscila SFC Gomes

e Peak (nm)	4000 3500 3000 2500					ŧ						1. 6 10 to 1	1																1
Force	2000	-		•	•		•		;	•			•		•			•				-							
	1500		•	MS MS Vir	SSA rule	n ent			• •						!			:	•••			•							
2022	1000	9	4	Ц	5	4	80	5	9	1	12	0	ŝ	5	22	34	C	6,	90	00	5	17	54	22	9	3	5	68	1
		Q6GJA	799V	Q8NX	Q6GB4	Q6GIK	Q5HHM	Q932C	08647	099R0	Q6GDH	Q8NUL	A0A0H2XKG	Q7A78	08648	Q5HIB	Q8NXX	Q2FJ7	Q6GBS	Q99W4	Q6GJA	Q99W4	Q6GBS	Q5HIB	Q99W4	Q8NXX	Q932F	08648	Q2FJ7
	ſ								[-								Г								
		BBP	ClfA							ClfB							Sd	lrC				SdrD				Sdr	E		

PSFC Gomes, ..., RC Bernardi; Protein structure prediction in the era of Al: challenges and limitations when applying to in-silico force spectroscopy. Frontiers

How Adhesin's Bonds Became Hyperstable

Michael Nash (U. Basel / ETH)

Historical strains 19th century:

- S. aureus subspecies aureus Rosenbach 1884
- DNA extraction using E.Z.N.A. Bacterial DNA kit (OMEGA Bio-Tek)

Isolates with MSSA and MRSA phenotypes:

- Strain NCTC 8325 (early 60s)
- Strain N315 (1982)
- Strain Mu50 (1997)

Sequencing

Protein sequences:

- 3D model construction
- All-atom MD simulations
- Force Resilience distribution

Summary

- Introduction to in silico SMFS
- Many biological systems respond to force in surprising, unexpected ways.
- Advanced software and exascale computing are revolutionizing our understanding of mechano-active proteins.
- Bacteria exploit hyperstable non-covalent bonds to adhere to host cells.
- Calcium plays a key role in regulating these adhesive interactions.
- Dynamic network analysis provides valuable insights into proteinprotein interactions.
- Evolutionary pressures are driving changes in pathogen adhesion properties.

62nd Hands-On Workshop on Computational Biophysics December 16 – 20, Auburn, AL

Explore cutting-edge computational biophysics techniques in this workshop, led by experts from the NIH Center. Topics include:

- Molecular Dynamics Simulations with NAMD 3.0
- Biomolecular Visualization and Analysis with VMD 2.0
- Using Supercomputer Resources with Cybershuttle ٠

Marcelo C. R. Melo Colorado State University

Sudhakar Pamidighantam Georgia Institute of Technology

Jérôme Henin

CNRS, France

Suresh Marru Georgia Institute of Technology

Giacomo Fiorin National Institutes of Health

JC Gumbart Georgia Institute of Technology

Diego E. B. Gomes Auburn University

Emad Tajkhorshid University of Illinois at Urbana-Champaign

Chris Chipot CNRS, France

John Stone **NVIDIA**

Rafael C. Bernardi

cbernardi@auburn.edu

Learn more

Join Auburn Physics

Engage in cutting-edge research in Atomic, Molecular, and Optical Physics; **Biophysics**; Condensed Matter Physics; Plasma Physics; Space Physics; and Physics Education Research.

Experience the newly built Leach Science Center with advanced labs, study spaces, and a rooftop astronomy terrace.

Why Choose Auburn University for Your PhD?

- R1: Top-Tier Research University
- Ranked #1 for Student Happiness
- Ranked among Top 15 Most Beautiful Campus in the U.S.
- 33,000+ Students in a Thriving
 Academic Community

Computational Biophysics Group @Auburn University

Dr. Diego EB Gomes Dr. Marcelo CR Melo Dr. Priscila SFC Gomes Bruce Shukla Bruno L Ribeiro Maggie Pace Meredith Forrester Raisa SL Rosa

Toby Sizemore Walter do Santos Filho

Collaborators

University of Illinois at Urbana-Champaign Prof. Emad Tajkhorshid

Prof. Klaus Schulten Prof. Zan Luthey-Schulten

Ludwig Maximilians University of Munich, Germany Prof. Hermann Gaub

University of Basel & ETH Zurich, Switzerland Prof. Michael Nash

Ultrech University, The Netherlands Prof. Jan Lipfert

Weizmann Institute, Israel Prof. Ed Bayer

Catholic University of Louvain, Belgium Prof. David Alsteens Prof. Yves Dufrene

University of Colorado Tom Perkins

University of Wisconsin – Milwaukee Ionel Popa

Funding

MCB-2143787 CAREER: In Silico Single-Molecule Force Spectroscopy

National Institutes of Health

R24 GM-145965 Resource for Macromolecular Modeling and Visualization

College of Sciences and Mathematics

May the Force be with you!