Slides will be distributed by the organizers

Computational Modeling of Active Systems

Rodrigo Soto Universidad de Chile

School on Active Matter, ICTP-SAIFR, Sao Paulo, 2024

Computational Modeling of Active Systems

Contents

- Self-propelled particles
- Lattice models
- Hydrodynamic interactions
- Tissues

What will we see?

- Models and their implementation
- Observables. Why and what we get from them

What will we not see?

• Efficient programming

Self-propelled particles (SPP) Stocker and Seymour

Self-propelled particles (SPP)

Model for bacteria, migrating cells, Janus colloids and other non-inertial agents

Key elements:

- \cdot Self propulsion: velocity $V = V_0 \hat{n}$
- Persistence: \hat{n} changes rarely
	- •To model some bacteria changes by tumbles: Runand-tumble particles (RTP)
	- •For Janus colloids, changes by rotational diffusion: Active Brownian Particles (ABP)

Active Brownian Particles

The director \hat{n} diffuses on the unit sphere, described by the Fokker-Planck equation for the probability

Active Brownian Particles

In simulations, instead of describing the probability distribution, we simulate a realization of $\hat{n}(t)$ and average over all (really many) possible realizations.

There is a theorem: Fokker-Planck is equivalent to Langevin *dn dt* $=\sqrt{2D_r}\xi\times\hat{n}$

The cross product guarantees that \hat{n} remains unitary

Here ξ is a white noise (Gaussian stochastic process with) $\langle \xi_i(t) \rangle = 0, \quad \langle \xi_i(t) \xi_k(t') \rangle = \delta(t - t') \delta_{ik}, \quad \langle \xi(t) \hat{n}(t') \rangle = 0$ if $t > t'$ ⃗

Active Brownian Particles

In 2D, it is direct to show (homework) that

$$
\frac{d\hat{n}}{dt} = \sqrt{2D_r}\vec{\xi} \times \hat{n}
$$

reduces to

$$
\frac{d\phi}{dt} = \sqrt{2D_r}\xi
$$

where ξ is a Gaussian stochastic process with $\langle \xi(t) \rangle = 0$, $\langle \xi(t) \xi(t') \rangle = \delta(t-t')$, $\langle \xi(t) \phi(t') \rangle = 0$ if $t > t'$

It is a stochastic differential equation (SDE)

Integration of SDE

Consider a simple stochastic differential equation *dx dt* $= f(x) + \sqrt{2D \xi(t)}$

Time discretization: $t_n = n\Delta t$; $x_n = x(t_n)$

We integrate the equation from t_n to t_{n+1}

$$
x_{n+1} - x_n = \int_{t_n}^{t_{n+1}} f(x(t))dt + \sqrt{2D} \int_{t_n}^{t_{n+1}} \xi(t)dt
$$

Euler scheme $F_n = f(x_n)\Delta t$
 I_n ????

Integration of SDE

$$
I_n \equiv \int_{t_n}^{t_{n+1}} \xi(t)dt
$$

- Are stochastic variables
- Sum of Gaussian, then Gaussian (we only need the mean and covariance)
- $\langle I_n \rangle = 0$

• If
$$
n \neq m
$$
, then $\langle I_n I_m \rangle = 0$ because $\langle \xi(t)\xi(t') \rangle = \delta(t - t')$
\n
$$
\langle I_n I_n \rangle = \int_{t_n}^{t_{n+1}} ds_1 \int_{t_n}^{t_{n+1}} ds_2 \langle \xi(s_1)\xi(s_2) \rangle
$$
\n
$$
= \int_{t_n}^{t_{n+1}} ds_1 \int_{t_n}^{t_{n+1}} ds_2 \delta(s_1 - s_2) = \int_{t_n}^{t_{n+1}} ds_1
$$
\n
$$
= \Delta t
$$

In summary I_n are independent Gaussian variables of zero mean an variance Δt

Integration of SDE

$$
\frac{dx}{dt} = f(x) + \sqrt{2D} \xi(t)
$$

\n
$$
x_{n+1} - x_n = f(x_n)\Delta t + \sqrt{2D_r}I_n = f(x_n)\Delta t + \sqrt{2D_r\Delta t}J_n
$$

\nwith $\langle J_n^2 \rangle = 1$

Algorithm:

For (many realizations) x = Initial condition For t in time $J =$ random.normal $(0, 1)$ $x = x + f(x)*Dt + sqrt(2*Dr*Dt)*J$

Tumbles

With rate ν a new director \hat{n}' is chosen at random with $\text{probability } w(\hat{n}, \hat{n}') = \hat{w}(\hat{n} \cdot \hat{n}') = \hat{w}(\alpha)$ ̂

How to sample the rate and \hat{w} ? ̂

A rate ν means that in a small Δt the probability of the event is $p=\nu\Delta t\ll 1$

For that, take u random number in $[0,1)$

```
Algorithm:
For t in time 
  x = x + (something)u = random.uniform(0, 1)
  if (u < nu*dt) 
     make tumble
```


Tumbles

How to choose the new \hat{n} ? ̂

1) If the distribution is uniform

In 2D, simple: phi = random.uniform $(0,2*pi)$

In 3D, wrong algorithm

```
nx = random.uniform(-1,1)ny = random.uniform(-1,1)nz = random.uniform(-1,1)
n = sqrt(nx**2 + ny**2 + nz**2)nx = nx/nny = nx/nnz = nx/n
```
In 3D, correct algorithm do

```
nx = random.uniform(-1,1)ny = random.uniform(-1,1)nz = random.uniform(-1,1)n = sqrt(nx**2 + ny**2 + nz**2)while(n>1)nx = nx/nnv = nx/nnz = nx/n
```


Also, other methods using change of variable or Gaussian variables

Tumbles

How to choose the new \hat{n} ? ̂

2) If the distribution is not uniform

If possible apply the method of change of variables

If not, use the rejection method (Monte Carlo)

```
For example, in 2D, with w(\alpha)
```

```
Algorithm:
do 
   q = random.uniform(0, wmax)alpha = random.uniform(-pi,pi)while(q > w(alpha))phi=phi+alpha
```
In 3D, with $w(\hat{n} \cdot \hat{n}')$

```
do 
   q = random.uniform(0, wmax)hatnprime = random.uniformunitvector() 
while(q > w(hatn. hatnprime))
hatn= hatnprime
```


Up to here, independent ABPs or RTP

In active colloids, particle are spherical and hard, effectively impenetrable

Equations of motion with inertia with $U_T = \sum U(\vec{r}_i - \vec{r}_j)$ $m\dot{V}_i = -\gamma V_i + F_0 \hat{n}_i - \nabla_i U_T$ ̂ *i*,*j* ⃗ \overline{a}

If inertia in neglected $(m \rightarrow 0)$ $V_i = (F_0/\gamma)\hat{n}_i - \nabla_i(U_T/\gamma)$ ̂

is the interacting SPP model with $V_0 = F_0/\gamma$ and $U_T/\gamma \rightarrow U_T$ with units of L^2/T (diffusion coefficient)

Simple models for the interaction potential

Elastic
$$
U(r) = \begin{cases} \frac{k}{2}(\sigma - r)^2, & r < \sigma \\ 0, & \sim \end{cases}
$$

WCA (aka LJ)
$$
U(r) = \begin{cases} 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right], & r < 2^{1/6}\sigma \\ 0, & \sim \end{cases}
$$

Brute force algorithm

It is too slow for large systems

If the force has a finite range (as WCA)

Naïve solution

```
For t in time 
   for i in NumberOfParticles 
      V[i] = V \Theta^*hatin[i]for i in NumberOfParticles 
      for iif(rij < rc) 
            f = F(r[i] - r[j])V[i] = V[i] + fV[i] = V[i] - ffor i in NumberOfParticles 
      r[i] = r[i] + V[i]*dt
```

```
hatn[i] = (something / ABP or RTP)
```

```
Still O(N^2), slightly faster
```
Efficient solution

Linked cells

Every particle interacts at most with neighbor cells

```
For t in time 
   AllocateParticlesInCells() 
   for i in NumberOfParticles 
       V[i] = V 0*hat[i]for i in NumberOfParticles 
       for j in Neighborhood(i) 
           if(rii < rc)f = F(r[i] - r[j])V[i] = V[i] + fV[i] = V[i] - ffor i in NumberOfParticles 
       r[i] = r[i] + V[i]*dthat[i] = (something / ABP or RTP)
```


Also Verlet lists.

```
For each particle the list with neighbors up to r<sub>s</sub>is built every several time steps
For t in time 
    if (t several) 
        BuildVerletLists() 
    for i in NumberOfParticles 
       V[i] = V \Theta^*hath[i]for i in NumberOfParticles 
       for j in VerletList(i) 
            if(rii < rc)
```


Measurements

We will see

- Pair correlation functions
- Spatial fields
- Mean square displacement
- Temporal correlation functions

In all cases, we will implement **on-the-fly** measurements

Avoid recording the full trajectory for postprocessing: unnecessary and too heavy.

Measure the probability to find another particle at a certain distance from any, taken as center

We use a binning distance Δ*r*


```
For t in time 
   … Simulate … 
   if (time to measure) 
     NMedG += 1
      for i in NumberOfParticles 
        for j in Neighborhood(i) 
           distance = |r[i] - r[j]| # considering PBC
           bin = int(distance/Deltar) 
           Gacum[bin] += 1# after the end of the simulation 
for bin 
   g[bin] = Gacum[bin]/(NMedG*N*2*pi*(bin*Deltar)*Deltar*rho)
```
But also, we can measure the angular correlation. There are three angles $\phi_1^{},\phi_2^{},$ and ψ What to measure? $\langle \cos(\phi_1 - \phi_2) \rangle$, $\langle \cos \phi_1 \cos \phi_2 \rangle$,

The angle ψ fixes the reference axis, angles are measured w/r to it Note that $\langle \cos(\phi_1 - \psi) \sin(\phi_2 - \psi) \rangle = 0$ by symmetry $C_{\parallel} = \langle \cos(\phi_1 - \psi)\cos(\phi_2 - \psi) \rangle = \langle (\hat{n}_1 \cdot \hat{r})(\hat{n}_2 \cdot \hat{r}) \rangle$ ̂ $C_{\perp} = \langle \sin(\phi_1 - \psi)\sin(\phi_2 - \psi) \rangle = \langle (\hat{n}_1 \cdot \hat{t})(\hat{n}_2 \cdot \hat{t}) \rangle$ ̂

and $C_{\alpha} = \langle \hat{n}_{1} \cdot \hat{n}_{2} \rangle = C_{\parallel} - C_{\perp}$ ̂

The angle ψ fixes the reference axis, angles are measured w/r to it $C_{\parallel} = \langle \cos(\phi_1 - \psi) \cos(\phi_2 - \psi) \rangle = \langle (\hat{n}_1 \cdot \hat{r}) (\hat{n}_2 \cdot \hat{r}) \rangle$ ̂ 1 **t** *t t* **A A** *t x*

$$
C_{\perp} = \langle \sin(\phi_1 - \psi)\sin(\phi_2 - \psi) \rangle = \langle (\hat{n}_1 \cdot \hat{t})(\hat{n}_2 \cdot \hat{t}) \rangle
$$

and $C_{\alpha} = \langle \hat{n}_1 \cdot \hat{n}_2 \rangle = C_{\parallel} - C_{\perp}$ ̂

With the same binning

```
For t in time 
   … Simulate … 
   if (time to measure) 
      NMedG += 1
      for i in NumberOfParticles 
          for j in Neighborhood(i) 
             distance = |r[i] - r[j]| # considering PBC
             bin = int(distance/Deltar) 
             Gacum[bin] += 1Gparlallelacum[bin] += cos*cos 
             Gperpendicularacum[bin] += sin*sin 
# after the end of the simulation 
for bin 
   g[bin] = Gacum[bin]/(NMedG*N*2*pi*(bin*Deltar)*Deltar*rho) 
   Gparallel[bin] = Gparlalleacum[bin]/Gacum[bin] 
   Gperpendicular[bin] = Gperpendicularacum[bin]/Gacum[bin]
```
Simulation with

 $Lx=Ly=15$ $n0=0.3$ $N=67$ $Dr=0.1$

