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Self-propelled 
particles (SPP)

The adjustment of flagellar rotation in response to chemoeffec-
tors can result in two processes that are often lumped under the
label “chemotaxis”: actual chemotaxis and chemokinesis (102).
Chemotaxis proper is a directional response driven by the pres-
ence of a chemoeffector gradient, whereas chemokinesis is the
modulation of the swimming speed in response to the concentra-
tion (not the gradient) of the chemoeffector. For example, cells
can accumulate in regions of high chemoeffector concentration by
reducing their swimming speed, even if they do not sense a gradi-
ent per se. Here we interpret chemotaxis in the more restrictive
sense of a gradient response.

The “explore and exploit” strategy is common to most chemot-
actic bacteria, yet specific implementations vary greatly (130),
likely in response to different environmental conditions. The
ocean provides unique environmental constraints for chemotaxis,
including low nutrient concentrations, ephemeral gradients, and
pervasive flow. It is thus not surprising that marine bacteria (see,
e.g., Fig. 7C), as we will see, exhibit strong phenotypic differences
from enteric models like E. coli, including higher swimming
speeds, drastically different motility patterns (Fig. 7D), and higher
levels of chemotactic performance (186).

While some of the most abundant groups of marine bacteria,

FIG 7 Flagellation and motility patterns, illustrating fundamental differences between enteric model organisms and some marine bacteria. (A) Epifluorescent
image of Escherichia coli, showing multiple flagella. Reproduced from reference 194 with permission. (B) E. coli swims in a run-and-tumble pattern, where each
nearly straight swimming segment (run) is interrupted by a nearly random change in direction (tumble). The image shows a 30-s trajectory containing 26 runs
and tumbles. The trajectory spans !100 "m from left to right. (Reproduced from reference 25a by permission from Macmillan Publishers Ltd. Copyright 1972.)
(C) Transmission electron microscopy image of Vibrio alginolyticus, showing the single polar flagellum (K. Son, J. S. Guasto, and R. Stocker, unpublished). (D)
The “hybrid” swimming pattern of Vibrio alginolyticus, alternating reversals (180-degree changes in directions) after each forward run (green segments) and large
reorientations after each backward run (red segments). The reorientations, some of which are highlighted by black circles, are caused by a whip-like deformation
of the flagellum (a “flick”). Dots are 1/30th of a second apart. (Reproduced from reference 207 with permission.)

Stocker and Seymour

800 mmbr.asm.org Microbiology and Molecular Biology Reviews
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Self-propelled particles (SPP)
Model for bacteria, migrating cells, Janus colloids and 
other non-inertial agents


Key elements:

•Self propulsion: velocity 

•Persistence:  changes rarely

•To model some bacteria changes by tumbles: Run-
and-tumble particles (RTP)

•For Janus colloids, changes by rotational diffusion: 
Active Brownian Particles (ABP)

⃗V = V0 ̂n
̂n



Active Brownian Particles
The director  diffuses on the unit sphere, described by 
the Fokker-Planck equation for the probability 





in 2D





in 3D


̂n

∂P( ̂n, t)
∂t

= Dr ∇2
̂n P

∂P(ϕ, t)
∂t

= Dr
∂2P
∂ϕ2

∂P(θ, ϕ, t)
∂t

= Dr [ 1
sin θ

∂
∂θ (sin θ

∂P
∂θ ) + 1

sin2 θ
∂2P
∂ϕ2 ]



Active Brownian Particles
In simulations, instead of describing the probability 
distribution, we simulate a realization of  and average 
over all (really many) possible realizations.

There is a theorem: Fokker-Planck is equivalent to Langevin


 


The cross product guarantees that  remains unitary


Here  is a white noise (Gaussian stochastic process with)




̂n(t)

d ̂n
dt

= 2Dr ⃗ξ × ̂n

̂n

⃗ξ
⟨ξi(t)⟩ = 0, ⟨ξi(t)ξk(t′ )⟩ = δ(t − t′ )δik, ⟨ ⃗ξ(t) ̂n(t′ )⟩ = 0 if t > t′ 



Active Brownian Particles
In 2D, it is direct to show (homework) that 


 


reduces to





where  is a Gaussian stochastic process with




It is a stochastic differential equation (SDE)

d ̂n
dt

= 2Dr ⃗ξ × ̂n

dϕ
dt

= 2Drξ

ξ
⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′ )⟩ = δ(t − t′ ), ⟨ξ(t)ϕ(t′ )⟩ = 0 if t > t′ 



Integration of SDE
Consider a simple stochastic differential equation





Time discretization: 

We integrate the equation from  to 





Euler scheme 

 ????

dx
dt

= f(x) + 2D ξ(t)

tn = nΔt; xn = x(tn)
tn tn+1

xn+1 − xn = ∫
tn+1

tn
f(x(t))dt

Fn

+ 2D ∫
tn+1

tn
ξ(t)dt

In
Fn = f(xn)Δt

In



Integration of SDE



• Are stochastic variables

• Sum of Gaussian, then Gaussian (we only need the mean and covariance)

• 

• If , then  because 





In summary  are independent Gaussian variables of zero mean an variance 

In ≡ ∫
tn+1

tn
ξ(t)dt

⟨In⟩ = 0
n ≠ m ⟨InIm⟩ = 0 ⟨ξ(t)ξ(t′ )⟩ = δ(t − t′ )

⟨InIn⟩ = ∫
tn+1

tn
ds1 ∫

tn+1

tn
ds2⟨ξ(s1)ξ(s2)⟩

= ∫
tn+1

tn
ds1 ∫

tn+1

tn
ds2δ(s1 − s2) = ∫

tn+1

tn
ds1

= Δt

In Δt



Integration of SDE





with 


Algorithm:

For (many realizations) 

x = Initial condition 
For t in time 

J = random.normal(0,1) 
x = x + f(x)*Dt + sqrt(2*Dr*Dt)*J

dx
dt

= f(x) + 2D ξ(t)
xn+1 − xn = f(xn)Δt + 2DrIn = f(xn)Δt + 2DrΔtJn

⟨J2
n⟩ = 1



Tumbles
With rate  a new director  is chosen at random with 
probability 

How to sample the rate and ?


A rate  means that in a small  the probability of 
the event is 

For that, take  random number in [0,1)

Algorithm:

For t in time 

x = x + (something) 
u = random.uniform(0,1) 
if (u < nu*dt) 

make_tumble

ν ̂n′ 

w( ̂n, ̂n′ ) = ŵ( ̂n ⋅ ̂n′ ) = ŵ(α)
ŵ

ν Δt
p = νΔt ≪ 1

u



Tumbles
How to choose the new ?

1) If the distribution is uniform

In 2D, simple:

phi = random.uniform(0,2*pi) 

In 3D, wrong algorithm

nx = random.uniform(-1,1) 
ny = random.uniform(-1,1) 
nz = random.uniform(-1,1) 
n = sqrt(nx**2 + ny**2 + nz**2) 
nx = nx/n 
ny = nx/n 
nz = nx/n 

In 3D, correct algorithm

do 

nx = random.uniform(-1,1) 
ny = random.uniform(-1,1) 
nz = random.uniform(-1,1) 
n = sqrt(nx**2 + ny**2 + nz**2) 

while(n>1) 
nx = nx/n 
ny = nx/n 
nz = nx/n 

Also, other methods using change of variable or Gaussian variables

̂n



Tumbles
How to choose the new ?

2) If the distribution is not uniform

If possible apply the method of change of variables


If not, use the rejection method (Monte Carlo)

For example, in 2D, with 

Algorithm:

do 

q = random.uniform(0,wmax) 
alpha = random.uniform(-pi,pi) 

while(q > w(alpha)) 
phi=phi+alpha 

In 3D, with 

do 

q = random.uniform(0,wmax) 
hatnprime = random.uniformunitvector() 

while(q > w(hatn. hatnprime)) 
hatn= hatnprime

̂n

w(α)

w( ̂n ⋅ ̂n′ )



Interactions
Up to here, independent ABPs or RTP


In active colloids, particle are spherical and hard, effectively impenetrable 


Equations of motion with inertia




with 


If inertia in neglected ( )




is the interacting SPP model with  
 and  with units  

of L^2/T (diffusion coefficient)

m ·Vi = − γVi + F0 ̂ni − ∇iUT
UT = ∑

i,j
U( ⃗ri − ⃗rj)

m → 0
Vi = (F0/γ) ̂ni − ∇i(UT /γ)

V0 = F0/γ UT /γ → UT



Interactions
Simple models for the  
interaction potential


Elastic   


WCA (aka LJ)   


U(r) = {
k
2 (σ − r)2, r < σ
0, ∼

U(r) = 4ϵ [( σ
r )

12
− ( σ

r )
6], r < 21/6σ

0, ∼



Interactions
Brute force algorithm

For t in time 

for i in NumberOfParticles 
V[i] = V_0*hatn[i] 

for i in NumberOfParticles  
for j<i 

f = F(r[i]-r[j]) 
V[i] = V[i] + f 
V[j] = V[j] - f 

for i in NumberOfParticles  
r[i] = r[i] + V[i]*dt 
hatn[i] = (something / ABP or RTP) 

It is too slow for large systems


O(N )

O(N2)

O(N )



Interactions
If the force has a finite range (as WCA)

Naïve solution

For t in time 

for i in NumberOfParticles 
V[i] = V_0*hatn[i] 

for i in NumberOfParticles  
for j<i 

if(rij < rc) 
f = F(r[i]-r[j]) 
V[i] = V[i] + f 
V[j] = V[j] - f 

for i in NumberOfParticles  
r[i] = r[i] + V[i]*dt 
hatn[i] = (something / ABP or RTP) 

Still , slightly faster
O(N2)



Efficient solution
Linked cells 
Every particle interacts at most with neighbor cells

For t in time 

AllocateParticlesInCells() 

for i in NumberOfParticles 
V[i] = V_0*hatn[i] 

for i in NumberOfParticles  
for j in Neighborhood(i) 

if(rij < rc) 
f = F(r[i]-r[j]) 
V[i] = V[i] + f 
V[j] = V[j] - f 

for i in NumberOfParticles  
r[i] = r[i] + V[i]*dt 
hatn[i] = (something / ABP or RTP) 

Also Verlet lists. 
For each particle the list with neighbors up to   
is built every several time steps

For t in time 

if (t several) 
BuildVerletLists() 

for i in NumberOfParticles 
V[i] = V_0*hatn[i] 

for i in NumberOfParticles  
for j in VerletList(i) 

if(rij < rc)

rs



Measurements
We will see

• Pair correlation functions

• Spatial fields

• Mean square displacement

• Temporal correlation functions


In all cases, we will implement on-the-fly 
measurements

Avoid recording the full trajectory for postprocessing: 
unnecessary and too heavy.



Pair correlation functions
Measure the probability to find another particle at a certain 
distance from any, taken as center


We use a binning distance 


For t in time 
… Simulate … 

if (time to measure) 
NMedG += 1 
for i in NumberOfParticles  

for j in Neighborhood(i) 
distance = |r[i] - r[j]| # considering PBC 
bin = int(distance/Deltar) 
Gacum[bin] += 1 

# after the end of the simulation 
for bin 

g[bin] = Gacum[bin]/(NMedG*N*2*pi*(bin*Deltar)*Deltar*rho)

Δr



Pair correlation functions
But also, we can measure the angular correlation. There are three angles , , and 

What to measure? , , ….


The angle  fixes the reference axis, angles are measured w/r to it





Note that  by symmetry


and 


ϕ1 ϕ2 ψ
⟨cos(ϕ1 − ϕ2)⟩ ⟨cos ϕ1 cos ϕ2⟩

ψ
C∥ = ⟨cos(ϕ1 − ψ)cos(ϕ2 − ψ)⟩ = ⟨( ̂n1 ⋅ ̂r)( ̂n2 ⋅ ̂r)⟩
C⊥ = ⟨sin(ϕ1 − ψ)sin(ϕ2 − ψ)⟩ = ⟨( ̂n1 ⋅ ̂t )( ̂n2 ⋅ ̂t )⟩

⟨cos(ϕ1 − ψ)sin(ϕ2 − ψ)⟩ = 0
Cα = ⟨ ̂n1 ⋅ ̂n2⟩ = C∥ − C⊥



Pair correlation functions
The angle  fixes the reference axis, angles are measured w/r to it





and 


With the same binning

For t in time 

… Simulate … 
if (time to measure) 

NMedG += 1 
for i in NumberOfParticles  

for j in Neighborhood(i) 
distance = |r[i] - r[j]| # considering PBC 
bin = int(distance/Deltar) 
Gacum[bin] += 1 
Gparlallelacum[bin] += cos*cos  
Gperpendicularacum[bin] += sin*sin  

# after the end of the simulation 
for bin 

g[bin] = Gacum[bin]/(NMedG*N*2*pi*(bin*Deltar)*Deltar*rho) 
Gparallel[bin] = Gparlalleacum[bin]/Gacum[bin] 
Gperpendicular[bin] = Gperpendicularacum[bin]/Gacum[bin]

ψ
C∥ = ⟨cos(ϕ1 − ψ)cos(ϕ2 − ψ)⟩ = ⟨( ̂n1 ⋅ ̂r)( ̂n2 ⋅ ̂r)⟩
C⊥ = ⟨sin(ϕ1 − ψ)sin(ϕ2 − ψ)⟩ = ⟨( ̂n1 ⋅ ̂t )( ̂n2 ⋅ ̂t )⟩

Cα = ⟨ ̂n1 ⋅ ̂n2⟩ = C∥ − C⊥



Pair correlation functions
Simulation with

Lx=Ly=15    n0=0.3    N=67    Dr=0.1


