Slides will be s
distributed by AN sl
the organizers

ACTIVE MATTER ::

Millennium Nucleus Physics of Active Matter

Computational Modeling
of Active Systems

Rodrigo Soto
Universidad de Chile

School on Active Matter, ICTP-SAIFR, Sao Paulo, 2024

Computational Modeling of
Active Systems

Contents

e Self-propelled particles
| attice models
 Hydrodynamic interactions

e Tissues

What will we see?
* Models and their implementation

* Observables. Why and what we get from
them

What will we not see?

 Efficient programming

Self-propelled
particles (SPP)

..'0':\

Berg et al. 1972

Self-propelled particles (SPP)

Model for bacteria, migrating cells, Janus colloids and
other non-inertial agents

Key elements:
- Self propulsion: velocity ‘7 = Vyn

- Persistence: 71 changes rarely

» To model some bacteria changes by tumbles: Run-
and-tumble particles (RTP)

* For Janus colloids, changes by rotational diffusion:
Active Brownian Particles (ABP)

Active Brownian Particles

The director 71 diffuses on the unit sphere, described by
the Fokker-Planck equation for the probability

0P (7, t
D _pv2p
ot

in 2D

0P, D _ 0°P
or g2

in 3D

oP(0, ¢, 1) 1 o0 (. OP 1 0°P
=D, |— Sin 00— | + —
ot sin 6 00 06 sin? @ d¢?

Active Brownian Particles

In simulations, instead of describing the probability

distribution, we simulate a realization of 71(¢) and average
over all (really many) possible realizations.

There is a theorem: Fokker-Planck is equivalent to Langevin

dan >
— =4/2D X n
dt \/_’”5

The cross product guarantees that 71 remains unitary

Here & is a white noise (Gaussian stochastic process with)

(ED) =0, (ENEWR)) =81 — 1)y, (EOAX)) =0ift > ¢

Active Brownian Particles

In 2D, it is direct to show (homework) that
dn

E =\/2Dr§><n

reduces to

d

a9 = /2D.&

dt

where & is a Gaussian stochastic process with

(EM)) =0, (E@OEE)) =0o0@—1), (EDP(t)) =0ift> ¢

It is a stochastic differential equation (SDE)

Integration of SDE

Consider a simple stochastic differential equation

dx

— =f)+ \/2D &(f)

Time discretization: ¢, = nAf; x, = x(1,)

We integrate the equation from 7, to 7, 4

X — X, = J " Hx)dt + /2D J " Hodt

tl’l n

— —

Fl’l Il’l
Euler scheme F, = f(x,)At

1 2277

Integration of SDE

tn+1
I = J E(t)dt
Z-I’l
* Are stochastic variables

 Sum of Gaussian, then Gaussian (we only need the mean and covariance)
« (I)=0
e Ifn # m,then (I I) = 0 because (£(1)E(1)) = o(t — 1)

(IL) = J ds, [" dsy(EsDEG))

n n

tn+1 tn+1 tn+1
— J dS1[dSzé(Sl — S2) — J dSl

[l [

n n n

= At

In summary /, are independent Gaussian variables of zero mean an variance At

Integration of SDE

dx

— =fw)+ \/2D &(1)

Xor1 — X, = f(x,)At ++/2D,1, = f(x,)At +/2D,AtJ,
with (J2) = 1

Algorithm:

For (many realizations)
X = Initial condition
For t in time
J = random.normal(0,1)
X = x + f(x)*Dt + sqrt(2*Dr*Dt) *J

Tumbles

With rate v a new director 71’ is chosen at random with

probability w7, 7)) = w(n - n') = w(a)
How to sample the rate and w?

A rate v means that in a small At the probability of
the eventisp = VAr < 1

For that, take u random number in [0,1)

Algorithm: O b {
For t in time r—
X = X + (something) N\
u = random.uniform(0,1) ACCePT

if (u < nu*dt)
make tumble

Tumbles

How to choose the new 717?
1) If the distribution is uniform
In 2D, simple:

phi = random.uniform(@,2*pi)

In 3D, wrong algorithm

random uniform(-1,1)

ny = random.uniform(-1,1)
nz = random.uniform(—l,l)
n = sqrt(nx**2 + ny**2 + nz**2)
nNxX = nx/n
ny = nx/n
nz = nx/n
In 3D, correct algorithm
do
nx random.uniform(-1,1)

ny random.uniform(-1,1)

nz random.uniform(-1,1)

n = sqrt(nx**2 + ny**2 + nz**2)
while(n>1)

nx = nx/n
ny = nx/n
nz = nx/n

7

EXCESS

UnpiFonn

Also, other methods using change of variable or Gaussian variables

Tumbles

How to choose the new 717?
2) If the distribution is not uniform

If possible apply the method of change of variables

If not, use the rejection method (Monte Carlo)

For example, in 2D, with w(a)
Algorithm:
do

q = random.uniform(@,wmax)
alpha = random.uniform(-pi,pi)
while(g > w(alpha))
phi=phi+alpha

In 3D, with w(# - A')
do

g = random.uniform(®,wmax)

hatnprime = random.uniformunitvector ()
while(qg > w(hatn. hatnprime))
hatn= hatnprime

I0NS

Interact

independent ABPs or RTP

Up to here

particle are spherical and hard, effectively impenetrable

In active colloids

Equations of motion with inertia

) S
> =~]
~
| S
ICRCN:
FU o
+ @
- ~ O
Vyzlm
R =
B~ qy)
ST~
> 5
S 2 -

(Fo/V)ﬁi - Vi(UT/}’)

Vi:

is the interacting SPP model with

Vo= Fyl/yand U;/y — Uy with units

of LA2/T (diffusion coefficient)

Interactions

Simple models for the
Interaction potential

Elastic U(r) =
0,

O

WCA (aka LJ) U(r) = te [(r
Oa

%(a— 1, r<o

N

) - (¢

Interactions

Brute force algorithm

For t in time

for 1 in NumberOfParticles
V[i] = V_0*hatn[i] }O(N)

for 1 in NumberOfParticles
for] <1

= F(r[1] riil) O(N?)
V[1] = V[i] + f
V[j] = V[j] - f

for 1 in NumberOfParticles
rf{i] = r[1] + V[i]*dt O(N)

hatn[i] = (something / ABP or RTP)

It is too slow for large systems

Interactions

If the force has a finite range (as WCA)
Naive solution

For t in time
for 1 in NumberOfParticles
V[i] = V_0*hatn[i]

for i in NumberOfParticles
for j<i
1f(r1] < rc)
= F(r[1] rijl)
V[1] = V[i] + f
V[ijl = VI[j] - f

for 1 in NumberOfParticles

r{(i]l] = r[i] + V[i]*dt
hatn[i1] = (something / ABP or RTP)

Still O(N?), slightly faster

Efficient solution

Linked cells

Every particle interacts at most with neighbor cells

For t in time
AllocateParticlesInCells ()

for i in NumberOfParticles
V[i] = V_0*hatn[i]

for i in NumberOfParticles
for j in Neighborhood (1)
1f(r1] < rec)
FC(r[il-r[j])
= V[i] + f

]
1 =VI[i] - f

[;
VI

for i in NumberOfParticles
riil = r[i] + V[i]*dt
hatn[i] = (something / ABP or RTP)

Also Verlet lists.

For each particle the list with neighbors up to r

IS built every several time steps

For t in time
if (t several)
BuildVerletLists ()

for i in NumberOfParticles
V[i] = V_0*hatn[i]

for i in NumberOfParticles
for j in VerletList (i)
if(rij < rce)

HUNE
PO
llﬂﬂ [oar

rs > e

Measurements

We will see

* Pair correlation functions

o Spatial fields

 Mean square displacement

* Temporal correlation functions

In all cases, we will implement on-the-fly
measurements

Avoid recording the full trajectory for postprocessing:
unnecessary and too heavy.

Pair correlation functions

Measure the probability to find another particle at a certain
distance from any, taken as center O Q

O~ Qo
DA~ Oy
We use a binning distance Ar OO @O%
R0 gf
o0 ©
For t in time % 4

. Simulate ..

if (time to measure)
NMedG += 1 A4 +
for 1 in NumberOfParticles

for j in Neighborhood (i) J
distance = |r[i] - r[j]]| # considering PBC
bin = int(distance/Deltar)

Gacum[bin] += 1
after the end of the simulation

for bin
glbin] = Gacum[bin]/ (NMedG*N*2*pi*(bin*Deltar)*Deltar*rho)

Pair correlation functions

But also, we can measure the angular correlation. There are three angles ¢, ¢,, and
What to measure? (cos(¢; — ¢,)), (cos ¢, cos ¢h,),

The angle y fixes the reference axis, angles are measured w/r to it

C= (cos(¢p; — w)cos(P, — w)) = ((7Ay - P)(7Ay - 7))
C, = (sin(¢p; — w)sin(¢h, — w)) = (A, - 1)(A, - 1))
Note that (cos(¢; — y)sin(¢p, — w)) = 0 by symmetry
and C, = (A, - np) = G, — C,

Pair correlation functions

The angle yr fixes the reference axis, angles are measured w/r to it
C) = (cos(¢y — w)cos(p, —w)) = (A -)7ty - 7))

C, = (sin(¢p; — w)sin(¢, — y)) = ((A; - 1)(7A, - 1))
and C, = (i, - p) = € — C

With the same binning

For t in time

. Simulate ..
if (time to measure)
NMedG += 1

for i in NumberOfParticles
for j in Neighborhood (i)
distance = |r[1] - r[j]| # considering PBC
bin = int(distance/Deltar)
Gacum[bin] += 1
Gparlallelacum[bin] += cos*cos
Gperpendicularacum[bin] += sin*sin
after the end of the simulation
for bin
g[bin] = Gacum[bin]/ (NMedG*N*2*pi*(bin*Deltar)*Deltar*rho)
Gparallel[bin] = Gparlalleacum[bin]/Gacum[bin]
Gperpendicular[bin] = Gperpendicularacum[bin]/Gacum[bin]

Pair correlation functions

Simulation with

Lx=Ly=15 n0=0.3 N=67 Dr=0.1

g(r)

12 -
10 -
8-

6..

1

0 2 4 6 8 10

12

14

