
School on Active Matter, ICTP-SAIFR, Sao Paulo, 2024

Computational Modeling
of Active Systems
Rodrigo Soto
Universidad de Chile

Slides will be
distributed by
the organizers

• Self-propelled particles

• Lattice models

• Hydrodynamic interactions

• Tissues

Contents

Computational Modeling of
Active Systems

• Models and their implementation

• Observables. Why and what we get from

them

What will we see?

What will we not see?
• Efficient programming

Self-propelled
particles (SPP)

The adjustment of flagellar rotation in response to chemoeffec-
tors can result in two processes that are often lumped under the
label “chemotaxis”: actual chemotaxis and chemokinesis (102).
Chemotaxis proper is a directional response driven by the pres-
ence of a chemoeffector gradient, whereas chemokinesis is the
modulation of the swimming speed in response to the concentra-
tion (not the gradient) of the chemoeffector. For example, cells
can accumulate in regions of high chemoeffector concentration by
reducing their swimming speed, even if they do not sense a gradi-
ent per se. Here we interpret chemotaxis in the more restrictive
sense of a gradient response.

The “explore and exploit” strategy is common to most chemot-
actic bacteria, yet specific implementations vary greatly (130),
likely in response to different environmental conditions. The
ocean provides unique environmental constraints for chemotaxis,
including low nutrient concentrations, ephemeral gradients, and
pervasive flow. It is thus not surprising that marine bacteria (see,
e.g., Fig. 7C), as we will see, exhibit strong phenotypic differences
from enteric models like E. coli, including higher swimming
speeds, drastically different motility patterns (Fig. 7D), and higher
levels of chemotactic performance (186).

While some of the most abundant groups of marine bacteria,

FIG 7 Flagellation and motility patterns, illustrating fundamental differences between enteric model organisms and some marine bacteria. (A) Epifluorescent
image of Escherichia coli, showing multiple flagella. Reproduced from reference 194 with permission. (B) E. coli swims in a run-and-tumble pattern, where each
nearly straight swimming segment (run) is interrupted by a nearly random change in direction (tumble). The image shows a 30-s trajectory containing 26 runs
and tumbles. The trajectory spans !100 "m from left to right. (Reproduced from reference 25a by permission from Macmillan Publishers Ltd. Copyright 1972.)
(C) Transmission electron microscopy image of Vibrio alginolyticus, showing the single polar flagellum (K. Son, J. S. Guasto, and R. Stocker, unpublished). (D)
The “hybrid” swimming pattern of Vibrio alginolyticus, alternating reversals (180-degree changes in directions) after each forward run (green segments) and large
reorientations after each backward run (red segments). The reorientations, some of which are highlighted by black circles, are caused by a whip-like deformation
of the flagellum (a “flick”). Dots are 1/30th of a second apart. (Reproduced from reference 207 with permission.)

Stocker and Seymour

800 mmbr.asm.org Microbiology and Molecular Biology Reviews

D
ow

nl
oa

de
d

fro
m

 h
ttp

s:/
/jo

ur
na

ls.
as

m
.o

rg
/jo

ur
na

l/m
m

br
 o

n
16

 O
ct

ob
er

 2
02

2
by

 1
86

.1
06

.1
37

.2
27

.

Berg et al. 1972

Self-propelled particles (SPP)
Model for bacteria, migrating cells, Janus colloids and
other non-inertial agents

Key elements:

•Self propulsion: velocity

•Persistence: changes rarely

•To model some bacteria changes by tumbles: Run-
and-tumble particles (RTP)

•For Janus colloids, changes by rotational diffusion:
Active Brownian Particles (ABP)

⃗V = V0 ̂n
̂n

Active Brownian Particles
The director diffuses on the unit sphere, described by
the Fokker-Planck equation for the probability

in 2D

in 3D

̂n

∂P(̂n, t)
∂t

= Dr ∇2
̂n P

∂P(ϕ, t)
∂t

= Dr
∂2P
∂ϕ2

∂P(θ, ϕ, t)
∂t

= Dr [1
sin θ

∂
∂θ (sin θ

∂P
∂θ) + 1

sin2 θ
∂2P
∂ϕ2]

Active Brownian Particles
In simulations, instead of describing the probability
distribution, we simulate a realization of and average
over all (really many) possible realizations.

There is a theorem: Fokker-Planck is equivalent to Langevin

The cross product guarantees that remains unitary

Here is a white noise (Gaussian stochastic process with)

̂n(t)

d ̂n
dt

= 2Dr ⃗ξ × ̂n

̂n

⃗ξ
⟨ξi(t)⟩ = 0, ⟨ξi(t)ξk(t′)⟩ = δ(t − t′)δik, ⟨ ⃗ξ(t) ̂n(t′)⟩ = 0 if t > t′

Active Brownian Particles
In 2D, it is direct to show (homework) that

reduces to

where is a Gaussian stochastic process with

It is a stochastic differential equation (SDE)

d ̂n
dt

= 2Dr ⃗ξ × ̂n

dϕ
dt

= 2Drξ

ξ
⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = δ(t − t′), ⟨ξ(t)ϕ(t′)⟩ = 0 if t > t′

Integration of SDE
Consider a simple stochastic differential equation

Time discretization:

We integrate the equation from to

Euler scheme

 ????

dx
dt

= f(x) + 2D ξ(t)

tn = nΔt; xn = x(tn)
tn tn+1

xn+1 − xn = ∫
tn+1

tn
f(x(t))dt

Fn

+ 2D ∫
tn+1

tn
ξ(t)dt

In
Fn = f(xn)Δt

In

Integration of SDE

• Are stochastic variables

• Sum of Gaussian, then Gaussian (we only need the mean and covariance)

•

• If , then because

In summary are independent Gaussian variables of zero mean an variance

In ≡ ∫
tn+1

tn
ξ(t)dt

⟨In⟩ = 0
n ≠ m ⟨InIm⟩ = 0 ⟨ξ(t)ξ(t′)⟩ = δ(t − t′)

⟨InIn⟩ = ∫
tn+1

tn
ds1 ∫

tn+1

tn
ds2⟨ξ(s1)ξ(s2)⟩

= ∫
tn+1

tn
ds1 ∫

tn+1

tn
ds2δ(s1 − s2) = ∫

tn+1

tn
ds1

= Δt

In Δt

Integration of SDE

with

Algorithm:

For (many realizations)

x = Initial condition
For t in time

J = random.normal(0,1)
x = x + f(x)*Dt + sqrt(2*Dr*Dt)*J

dx
dt

= f(x) + 2D ξ(t)
xn+1 − xn = f(xn)Δt + 2DrIn = f(xn)Δt + 2DrΔtJn

⟨J2
n⟩ = 1

Tumbles
With rate a new director is chosen at random with
probability

How to sample the rate and ?

A rate means that in a small the probability of
the event is

For that, take random number in [0,1)

Algorithm:

For t in time

x = x + (something)
u = random.uniform(0,1)
if (u < nu*dt)

make_tumble

ν ̂n′

w(̂n, ̂n′) = ŵ(̂n ⋅ ̂n′) = ŵ(α)
ŵ

ν Δt
p = νΔt ≪ 1

u

Tumbles
How to choose the new ?

1) If the distribution is uniform

In 2D, simple:

phi = random.uniform(0,2*pi)

In 3D, wrong algorithm

nx = random.uniform(-1,1)
ny = random.uniform(-1,1)
nz = random.uniform(-1,1)
n = sqrt(nx**2 + ny**2 + nz**2)
nx = nx/n
ny = nx/n
nz = nx/n

In 3D, correct algorithm

do

nx = random.uniform(-1,1)
ny = random.uniform(-1,1)
nz = random.uniform(-1,1)
n = sqrt(nx**2 + ny**2 + nz**2)

while(n>1)
nx = nx/n
ny = nx/n
nz = nx/n

Also, other methods using change of variable or Gaussian variables

̂n

Tumbles
How to choose the new ?

2) If the distribution is not uniform

If possible apply the method of change of variables

If not, use the rejection method (Monte Carlo)

For example, in 2D, with

Algorithm:

do

q = random.uniform(0,wmax)
alpha = random.uniform(-pi,pi)

while(q > w(alpha))
phi=phi+alpha

In 3D, with

do

q = random.uniform(0,wmax)
hatnprime = random.uniformunitvector()

while(q > w(hatn. hatnprime))
hatn= hatnprime

̂n

w(α)

w(̂n ⋅ ̂n′)

Interactions
Up to here, independent ABPs or RTP

In active colloids, particle are spherical and hard, effectively impenetrable

Equations of motion with inertia

with

If inertia in neglected ()

is the interacting SPP model with  
 and with units  

of L^2/T (diffusion coefficient)

m ·Vi = − γVi + F0 ̂ni − ∇iUT
UT = ∑

i,j
U(⃗ri − ⃗rj)

m → 0
Vi = (F0/γ) ̂ni − ∇i(UT /γ)

V0 = F0/γ UT /γ → UT

Interactions
Simple models for the  
interaction potential

Elastic

WCA (aka LJ)

U(r) = {
k
2 (σ − r)2, r < σ
0, ∼

U(r) = 4ϵ [(σ
r)

12
− (σ

r)
6], r < 21/6σ

0, ∼

Interactions
Brute force algorithm

For t in time

for i in NumberOfParticles
V[i] = V_0*hatn[i]

for i in NumberOfParticles
for j<i

f = F(r[i]-r[j])
V[i] = V[i] + f
V[j] = V[j] - f

for i in NumberOfParticles
r[i] = r[i] + V[i]*dt
hatn[i] = (something / ABP or RTP)

It is too slow for large systems

O(N)

O(N2)

O(N)

Interactions
If the force has a finite range (as WCA)

Naïve solution

For t in time

for i in NumberOfParticles
V[i] = V_0*hatn[i]

for i in NumberOfParticles
for j<i

if(rij < rc)
f = F(r[i]-r[j])
V[i] = V[i] + f
V[j] = V[j] - f

for i in NumberOfParticles
r[i] = r[i] + V[i]*dt
hatn[i] = (something / ABP or RTP)

Still , slightly faster
O(N2)

Efficient solution
Linked cells
Every particle interacts at most with neighbor cells

For t in time

AllocateParticlesInCells()

for i in NumberOfParticles
V[i] = V_0*hatn[i]

for i in NumberOfParticles
for j in Neighborhood(i)

if(rij < rc)
f = F(r[i]-r[j])
V[i] = V[i] + f
V[j] = V[j] - f

for i in NumberOfParticles
r[i] = r[i] + V[i]*dt
hatn[i] = (something / ABP or RTP)

Also Verlet lists. 
For each particle the list with neighbors up to  
is built every several time steps

For t in time

if (t several)
BuildVerletLists()

for i in NumberOfParticles
V[i] = V_0*hatn[i]

for i in NumberOfParticles
for j in VerletList(i)

if(rij < rc)

rs

Measurements
We will see

• Pair correlation functions

• Spatial fields

• Mean square displacement

• Temporal correlation functions

In all cases, we will implement on-the-fly
measurements

Avoid recording the full trajectory for postprocessing: 
unnecessary and too heavy.

Pair correlation functions
Measure the probability to find another particle at a certain
distance from any, taken as center

We use a binning distance

For t in time
… Simulate …

if (time to measure)
NMedG += 1
for i in NumberOfParticles

for j in Neighborhood(i)
distance = |r[i] - r[j]| # considering PBC
bin = int(distance/Deltar)
Gacum[bin] += 1

after the end of the simulation
for bin

g[bin] = Gacum[bin]/(NMedG*N*2*pi*(bin*Deltar)*Deltar*rho)

Δr

Pair correlation functions
But also, we can measure the angular correlation. There are three angles , , and

What to measure? , , ….

The angle fixes the reference axis, angles are measured w/r to it

Note that by symmetry

and

ϕ1 ϕ2 ψ
⟨cos(ϕ1 − ϕ2)⟩ ⟨cos ϕ1 cos ϕ2⟩

ψ
C∥ = ⟨cos(ϕ1 − ψ)cos(ϕ2 − ψ)⟩ = ⟨(̂n1 ⋅ ̂r)(̂n2 ⋅ ̂r)⟩
C⊥ = ⟨sin(ϕ1 − ψ)sin(ϕ2 − ψ)⟩ = ⟨(̂n1 ⋅ ̂t)(̂n2 ⋅ ̂t)⟩

⟨cos(ϕ1 − ψ)sin(ϕ2 − ψ)⟩ = 0
Cα = ⟨ ̂n1 ⋅ ̂n2⟩ = C∥ − C⊥

Pair correlation functions
The angle fixes the reference axis, angles are measured w/r to it

and

With the same binning

For t in time

… Simulate …
if (time to measure)

NMedG += 1
for i in NumberOfParticles

for j in Neighborhood(i)
distance = |r[i] - r[j]| # considering PBC
bin = int(distance/Deltar)
Gacum[bin] += 1
Gparlallelacum[bin] += cos*cos
Gperpendicularacum[bin] += sin*sin

after the end of the simulation
for bin

g[bin] = Gacum[bin]/(NMedG*N*2*pi*(bin*Deltar)*Deltar*rho)
Gparallel[bin] = Gparlalleacum[bin]/Gacum[bin]
Gperpendicular[bin] = Gperpendicularacum[bin]/Gacum[bin]

ψ
C∥ = ⟨cos(ϕ1 − ψ)cos(ϕ2 − ψ)⟩ = ⟨(̂n1 ⋅ ̂r)(̂n2 ⋅ ̂r)⟩
C⊥ = ⟨sin(ϕ1 − ψ)sin(ϕ2 − ψ)⟩ = ⟨(̂n1 ⋅ ̂t)(̂n2 ⋅ ̂t)⟩

Cα = ⟨ ̂n1 ⋅ ̂n2⟩ = C∥ − C⊥

Pair correlation functions
Simulation with

Lx=Ly=15 n0=0.3 N=67 Dr=0.1

