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DNA FRAGMENTS SURVIVE IN ANCIENT SAMPLES...
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...BUT ONLY FRAGMENTS
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COULD THE THREE-DIMENSIONAL ARRANGEMENT
OF DNA FRAGMENTS SURVIVE?
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COULD THE THREE-DIMENSIONAL ARRANGEMENT
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A FIVE-YEAR FOSSIL HUNT BROUGHT US
TO A PERMAFROST CAVE...

Video credit: Love Dalén



-..WHERE WE FOUND A SKIN
FROM A 52,000-YEAR-OLD WOOLLY MAMMOTH




THE HAIRS WERE STILL THERE

Valeri Plotnikov
Dan Fisher
Photo: Love Dalen




WE KEPT ZOOMING IN USING A MICROSCOPE




NOW WE COULD SEE THE HAIR FOLLICLES...




...AND EVEN INDIVIDUAL CELLS




FINALLY WE ARRIVED AT NUCLEAR SCALE,




FINALLY WE ARRIVED AT NUCLEAR SCALE,
BUT ZOOMING REQUIRED A NEW METHOD: PALEOHI-C
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HERE IS WHAT THE PALEOHI-C DATA LOOKED LIKE
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THIS IS WHAT THE ASSEMBLY LOOKED LIKE
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THIS IS WHAT THE ASSEMBLY LOOKED LIKE

By the way this is
a mammoth chromosome territory
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SO YES, WE CAN PEEK INSIDE
THE NUCLEUS OF A WOOLLY MAMMOTH




CAN WE KEEP GOING?




WHAT ABOUT COMPARTMENTS?




DO COMPARTMENTS PERSIST?
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DO COMPARTMENTS PERSIST?




DO COMPARTMENTS PERSIST?
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THE FIDELITY OF PRESERVATION IS HIGH ENOUGH
TO PICK UP CELL-SPECIFIC PATTERNS...




...AND WE CAN USE THE SIGNAL TO FIGURE OUT WHICH
GENES WERE ‘ON’ IN THE SKIN 52,000 YEARS AGO
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YES, WE CAN SEE COMPARTMENTS!




CAN WE ZOOM IN EVEN FURTHER?




DO LOOPS PERSIST?
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LOOPS PERSIST FOR 52,000 YEARS!
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WE CAN SEE FOSSILS OF ANCIENT CHROMOSOMES!




WE CAN SEE FOSSILS OF ANCIENT CHROMOSOMES!
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ANCIENT DNA FRAGMENTS IN
OUR SAMPLES APPEAR NOT TO HAVE
DIFFUSED MUCH



SURVIVAL OF ARCHITECTURAL FEATURES
RULES OUT RMSD>50NM

Diffusivity and viscosity estimates for woolly mammoth chromatin based on the preservation of various architectural features

Feature RMSD (nm) Diffusivity (m?/s) Viscosity (kg/m-s)
Nucleus <5000 <25x 10 >4.6 x 10°
Chromosome territories <2000 <41 x 10 % >2.9 x 10'°
Barr body <1000 <1.0x107%® >1.2 x 10"

Point-to-point loops <50 <25 x 10°%° >4.6 x 10"
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SO DOES THE MODELING

Initial structure
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TAKEN TOGETHER WE ARE CONFIDENT

THAT RMSD IS <50NM

Diffusivity and viscosity estimates for woolly mammoth chromatin based on the preservation of various architectural features

Feature RMSD (nm) Diffusivity (m“/s) Viscosity (kg/m-s)
Nucleus <5000 <25 x 107 >4.6 x 10°
Chromosome territories <2000 <41 x10® >2.9 x 10"
Barr body <1000 <1.0x107%® >1.2 x 10"
Point-to-point loops <50 <25x 10°%° >4.6 x 10"
Contact probability ...

... using simple diffusion model <50 <25x 10 >4.6 x 10"

... using excluded volume model <20 <41 x 1072 >2.9 x 10"




RMSD IS CONSISTENT WITH GLASSY STATE
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WE PERFORMED SOME EXPERIMENTS
IN MODERN SAMPLES TO TEST THE
HYPOTHESIS



W/O
INTERVENTION
ARCHITECTURE
DEGRADES
IN 4 DAYS
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W/O
INTERVENTION
ARCHITECTURE
DEGRADES
IN 4 DAYS
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100Kb

DEHYDRATION
PRESERVES 3D
ARCHITECTURE
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AS PARTICLES DIFFUSE FINE STRUCTURE IS DISTURBED
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BUT IN MAMMOTH FINE STRUCTURE IS PRESERVED
AT ALL ASSAYABLE SCALES
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*A BIT OF CONTEXT*

Alan Taylor Siberian mammoth pirates, The Atlantic, 2016



SOME GENES IN MAMMOTH ARE DIFFERENT...
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..AND SO IS CHR X




-..AND SO IS CHR X

Darrow, Huntley et al., PNAS 2016



-..AND SO IS CHR X
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-..AND SO IS CHR X

Darrow, Huntley et al., PNAS 2016



IT°S BEEN PUSHING ITS BOUNDARIES

ICCE DXZ4 FROST ICCE DXZ4

CTCF alignments

Darrow, Huntley et al., PNAS 2016



IT°S BEEN PUSHING ITS BOUNDARIES
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Video credits: Aleksandr Grafodatsky, Albert Protopopov



PREVIOUSLY, PROMISING RESULTS WERE
REPORTED IN A 15,000 Y.0. MAMMOTH...

Dark field and PI from Kato et al., Proc Jpn Acad Ser B Phys Biol Sci. 2009



-..AND A 28,000 Y.0. ‘YUKA’ MAMMOTH

Histone H3 Lamin B2

g

Immunostaining from Yamagata et al., Sci Rep. 2019



WE SEE ROUNDISH THINGS ON GIEMSA
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FA fixed CW nuclei, Giemsa in Buffer A, 10um scale bar



WE SEE SIMILAR SHAPES WITH PI STAINING...

FA fixed CW nuclei, Pl in Hi-C lysis buffer, 10um scale bar. ! Likely non-specific !



-..AND EB

No-FA CW nuclei, ethidium bromide in Hi-C lysis buffer, 100x



THEY ARE SIMILAR IN SIZE AND
SHAPE TO ELEPHANT NUCLEI

No-FA CW nuclei, ethidium bromide in Hi-C lysis buffer, 100x
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[[WE ARE HAVING SOME TROUBLE
CONNECTING THE TWO]]

Consecutive Giemsa and Pl staining, no FA crosslinking



WE TRIED DOING FISH ON THESE STRUCTURES,
BUT THE RESULTS ARE INCONCLUSIVE

e African elephant gDNA

e African elephant chromosome-
specific probes

* rDNA
* Telomeric DNA
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WE TRIED DOING FISH ON THESE STRUCTURES,
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WE TRIED TURNING THE TABLES
ON THE MAMMOTH

Micro-dissect the mammoth Amplify Label Stain the elephant
(& sequence, in progress)



MICRODISSECTION PROBES CONTAIN DNA...
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.« THAT LABELS SOMETHING IN ELEPHANT!

Negative control (debris and WGS) Mammoth microdissections Positive control (modern elephants)




LOOKS LIKE RDNA?

Negative control (debris and WGS) Mammoth microdissections Positive control (modern elephants)
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