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Outline

● Mesoscale modeling of the cytoskeleton and towards simulating 

eukaryotic cells

● Modeling protein complexes: For some important drug discovery 

tasks, AWSEM leaves AlphaFold2 in the dust 

● Virtual Screening of Small Molecules



MEDYAN Work

James Komianos

Carlos Floyd

NSF CHEMISTRY: CTMC  
NSF PHYSICS: POLS

Qin NiAravind Chandrasekaran

Arpita UpadhyayaHaoran Ni Radek Erban



T-cell activation 
Eric Betzig

We would like to simulate cellular dynamics based on 
the microscopic laws of physics and chemistry 





Dendritic nucleation/Array treadmilling model

• Pollard and Borisy, Cell 112, 453 (2003).
• T.D Pollard, L Blanchoin, R.D Mullins
Annu. Rev. Biophys. Biomol. Struct., 545–576 (2000)

Regulation of force 
generation is 
complicated! We would like to 

model all this!



3D simulation region is divided into 
compartments. 

Diffusion (Actin, Capping protein, 
Arp2/3) between compartments.

Chemical reactions in compartments:

Polymerization, Depolymerization, 
Capping, Branching...

Monte Carlo algorithm to generate 
stochastic trajectories

✏ K. Popov, J. Komianos, G. A. Papoian, 
PLOS Comp Bio, 2016, 
DOI:10.1371/journal.pcbi.1004877 
✏ L. Hu and G. A. Papoian, Biophys. J.; 
2010, 98,1375
✏ L. Hu and G. A. Papoian, J. Phys.: 
Condens. Matter; 2011, 23, 374101

MEDYAN: Mechanochemical Dynamics of Active Networks



The reaction-diffusion 
master equation

• Discretize space into 
locally well-mixed 
compartments (mass-
action kinetics)

• Includes both chemical 
reactions within 
compartments and 
diffusion between 
compartments

• Simulated using 
accelerated Gillespie 
algorithm variant 
(NRM)



✏ K. Popov, J. Komianos, G. A. Papoian, PLOS Comp Bio, 2016, DOI:10.1371/journal.pcbi.1004877 

Spatially resolved chemistry



MEDYAN: Mechanics



Finite-width Filament Model
• Designed a filament 

model that includes 
shearing, twisting, 
stretching, and 
bending

• Built on the 
Cosserat theory of 
elastic rods

• Spline functions
used to parameterize 
rod configuration

Carlos Floyd Haoran Ni Ravinda Gunaratne Radek Erban

✏ C. Floyd, H. Ni, R. Gunaratne, 
R. Erban, G. A. Papoian, “On 
Stretching, Bending, Shearing 
and Twisting of Actin Filaments 
I: Variational Models”, J Chem 
Theor Comp, (2022), 18, 4865 



Membrane crumpling in hyperosmotic solution

Tension:

Bending:

Volume Conservation:

Volume Exclusion:

Haoran Ni



Surface Reaction-Diffusion: Receptor Signaling & 
Clustering



Popov K, Komianos J, and Papoian GA, PLoS Comp. Biol. 2016

Time Evolution: An Adiabatic Ansatz



Actin 20 muM
a:A 0.01
M:A 0.05

# of actin 
monomers

# of polymer 
segments

MEDYAN 3.2 MEDYAN 4.0 MEDYAN 5.1 MEDYAN 
Julia

V = 1 μm3 12,000 300 12.5h 2.5h

V = 8 μm3 96,000 2,400 8d 1.5d

V = 27 μm3 270,000 12d 22h

V = 125 μm3 1,500,000 38,000 360d 27d

Timings on 1 core of 1 CPU

Wall times required to obtain 1000 seconds long trajectories

Mouse embryonic fibroblasts have a volume of approximately 1000 μm3

Nathan 

Zimmerberg



Axon Growth Cone Simulation

• 279283 actin monomers.

• The initial conditions and parameters for these simulations were ported from the 5 nM 
Arp2/3 simulations from:

• Aravind Chandrasekaran et al., MBoC 33.11 (2022)

• A MEDYAN.jl simulation takes 3 days to run on a single core with 4 GB memory.

• Previously took multiple weeks using C++ version.



http://medyan.org

Popov, Komianos, and Papoian, PLoS Comp. Biol. 2016

http://medyan.org




Towards Simulating a Whole Cell



Towards Simulating a Whole Cell



• Measuring entropy production in 
active matter phases is a 
necessary step to understand their 
self-organization

• Experimental measurements of 
forces produced by migrating cells 
suggests that dissipation of 
mechanical energy during 
migration is poorly understood 

• We developed an algorithm in 
MEDYAN to quantify dissipation 
rates 

Entropy Production and Avalanches in 
Actomyosin Networks

Floyd C, Papoian GA, Jarzynski C, Interface Focus, 10.1098/rsfs.2018.0078, (2019)

Liman, …, Wolynes, Levine, Cheung, PNAS, v 117, 10825, (2020)



• In vivo studies of cytoskeletal motions 
reveal heavy-tailed distributions of 
event sizes - similar to Gutenberg-
Richter law

• “Cytoquakes” have been introduced as 
large, sudden events in cytoskeletal 
dynamics

Shi, Y., et al., PNAS (2019)

Cal Floyd



Soft and Stiff Vibrational Modes 
• Numerically constructed Hessian matrix of 𝑈 to find the 

vibrational modes 𝐯𝑘 with stiffness 𝜆𝑘 and delocalization 𝑟𝑘

• Soft modes more spatially spread out than stiff modes



Avalanches in in vitro Actomyosin Systems

The self-part of the van Hove function, Gs(x,t), for 

actomyosin system with 0.74nM Arp 2/3. (Murrell Lab) 

(left). Gs(x,t) for system approximately equivalent to that 

with MEDYAN. (Papoian Lab) (right).
Michael 

Murrell
Patrick Kelly

Nathan 

Zimmerberg



Myosin walking on two parallel filaments with a third 
perpendicular filament blocking its path leads to motor stalling



This kind of motor stalling has been 
observed experimentally

Melli, L., et al. (2018) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829915/#video3



MEDYAN Application: Dendritic Spine

Dendritic Spine: A small protrusion on a
neuron's dendrite. Most spines have a bulbous head
(the spine head), and a thin neck. Our study
concentrated on the post-synaptic spine consisting
of branched F-actin, membrane and membrane
proteins.

[Bucher, M., Fanutza, T. and Mikhaylova, M., 2020. Cytoskeletal makeup of the 

synapse: Shaft versus spine. Cytoskeleton, 77(3-4), pp.55-64.]

Korobova, F. and

Svitkina, T., 2010.

Molecular architecture

of synaptic actin

cytoskeleton in

hippocampal neurons

reveals a mechanism

of dendritic spine

morphogenesis. Molec

ular biology of the

cell, 21(1), pp.165-176.

Cadherin: an intercellular
protein anchored to F-actin via
the catenin proteins,
positioned to dynamically
regulate spine actin
cytoskeleton and is required for
the growth and persistence of a
spine.

[Bozdagi, O., 2010. Persistence of coordinated long-term
potentiation and dendritic spine enlargement at mature
hippocampal CA1 synapses requires N-cadherin. Journal
of Neuroscience,30(30), pp.9984-9989.]
[Gumbiner, B.M., 2005. Regulation of cadherin-

mediated adhesion in morphogenesis. Nature reviews

Molecular cell biology, 6(8), pp.622-634.]

Mengxin Gu



Actin 
filaments 

Cadherin distribution

200nm

[Efimova, N., 2017. βIII spectrin is necessary for formation of the constricted neck of dendritic spines

and regulation of synaptic activity in neurons. Journal of Neuroscience, 37(27), pp.6442-6459.]

Simplified spine model

Time Evolution of A Spine: with both spectrin and
cadherin, a mushroom-like shape is achieved

Spectrin is model as slip bond. Spectrin distributes 
from the base of the neck to the  base of the head.



Effects of Arp2/3 Distribution

Arp2/3 Distribution ratio = d/D:                  0.4                          0.6                               0.8

The closer the Arp2/3 area to the PSD, the larger the spine head is. And the
upwards branching is one of the reason for a expansion of spine upper surface
and contributes to the negative curvature of the post-synaptic membrane.



Filament Severing by Cofilins

Cofilins sever actin filaments
by depolymerizing sequences
to free monomers. The
structure of cytoskeleton can
be obviously changed.

Cytoskeleton is discreted

Single F-actin to F-actin bundle Cofilins play a key role in Long-term Potentiation (LTP)

[Ohashi, K., 2015. Roles of cofilin in

development and its mechanisms of

regulation. Development, growth &

differentiation, 57(4), pp.275-290.]

[Hlushchenko, I., Koskinen, M. and

Hotulainen, P., 2016. Dendritic spine

actin dynamics in neuronal maturation

and synaptic

plasticity. Cytoskeleton, 73(9), pp.435-

441.]



A tug of war between filament treadmilling and myosin induced 

contractility generates actin ring 

Qin Ni Arpita Upadhyaya

T cell activation

Kaustubh 
Wagh 

Vishavdeep 
Vashisht

✏ eLife, 2022, v11, 
e82658
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Thanking colleagues at DeepOrigin and Peter

Peter Wolynes (Rice U)
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36* Often because insufficient data exists

ML models have not solved key challenges in the study 

of proteins
● Can predict:

○ Static folded structure

○ Some structural changes due to mutation (e.g., single 

amino acid substitution)

● Cannot predict very well:

○ Protein-protein interactions (e.g., dimer and multimer 

formation, antibody interactions)

○ Interaction with other macromolecules (e.g., DNA, 

within a lipid membrane)

○ Actual protein folding pathways and kinetics

○ Protein dynamics

ML models are incredibly useful, but not for every problem*



37All images from PDB

What ML cannot predict is critical to many R&D problems 

Optimizing macromolecular interactions 

(e.g., nanopore sequencing)

Optimization of protein-protein interactions 

(e.g., antibody design)

Predicting changes in conformation from 

binding (e.g., peptide drug design) 

Predicting structural changes from larger 

or multiple mutations (e.g., target 

discovery, drug design)

Modeling complex therapeutics with multi-

step rate constants (e.g., PROTACs, 

molecular glues)



38

Current Landscape in Protein Structure Prediction
Multiple sequence alignment (MSA)-based approaches

● AlphaFold2/3 (Google)

● RoseTTAFold (Baker lab)

Pros:

● High accuracy for natural proteins that have many 

analogs in sequence databases (MSA data)

● Use both MSA and structural data for training

● Database of ~200 million predicted structures 

available

Cons:

● Costly to train and run predictions

● Provide single or small number of conformation

● Conformations may not be biologically relevant

● Do not work well for sequences with no MSA data 

(antibodies,  orphan and synthetic proteins).

● Not well applicable to sequences with mutations

● Not well suited for prediction of protein-protein 

binding and multi-protein assembly

Large language model (LLM)-based approaches

● ESMFold (Facebook)

● OmegaFold (Helixon)

Pros:

● Predictions are an order of magnitude faster to run

● Work better for synthetic, mutant sequences and 

orphan proteins due to using single sequence input for 

training

● Database of ~600 million predicted structures available

Cons:

● Training is very costly (15 billion parameters)

● Provide single or small number of conformation

● Conformations may not be biologically relevant

● Lower accuracy for sequences with MSA data

● Not well suited for prediction of protein-protein binding 

and multi-protein assembly

● Only 1/3 of the database is considered of “high 

accuracy”
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The combination of physical and bioinformatics potentials 

allows for de novo prediction of protein structure

The superposition of native and predicted structures

✏ Davtyan, Schafer, Zheng, Clementi, Wolynes, Papoian, J. Chem Phys B, 116, (2012), 1709–1715

1R69 
(RMSD 1.6 Å)

4CPV 
(RMSD 1.3 Å)

3TMS
(RMSD 1.34 Å)



Lambda repressor

1LMB N=179

Factor for inversion stimulation

1F36 N=178

KIX-PKID

1KDX N=109

NFkB P50/P65

1VKX N=207
Predicted

Crystal structure

Arc repressor

1ARR N=106

Lambda Cro repressor

1COP N=132

✏ Following Zheng, 

Schafer, Davtyan, 

Papoian, Wolynes, 

PNAS, 109, (2012), 

19244-19249

AWSEM demonstrates exceptional performance in 

predicting protein-protein interactions
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Application of AWSEM to complex problems:

Design of PROTACs and molecular glues 

● Targeted protein degradation and modification is the fastest growing area in drug discovery 
with over 25 candidates in clinical trials for various diseases.

● However, development and optimization of PROteolysis Targeting Chimeras (PROTACs) and 
molecular glues remains challenging, especially in absence of structural data. 

● Accurate binding simulations with 
AWSEM can enable rational 
development and optimization of 
PROTACs and molecular glues.

● The ability to sample dynamics 
and assembly of large protein 
complexes is key to address 
unsolved problems similar to this.
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Preliminary results of binding prediction between E3 ligase and 

target proteins

Q over 0.6 indicates high degree of similarity to the native 

structure

Overlap with native complex of Cereblon and 

BRD4BD1 mediated by dBET6 PROTAC 

PDB ID: 6BOY

RMSD: 1.5 Å

The native structure is shown in white and 

prediction in orange
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E3 ligase/target complex predictions: AWSEM outperforms AlphaFold2
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Virtual Screening
• Problem: Current VS tools produce mostly false positives and likely miss 

highest quality binders
• How BiosimVS addresses this problem:

• Provides new algorithms with significantly better accuracy 
than then current SOTA 

• Efficiently screens multibillion ligand databases 
• Optimizes for binding affinity and desirable molecular 

properties 
• Highly efficient: Screening of 5B ligand library in 3 days
• SOTA property predictors for logS, logP, logD, hERG and 

other molecular properties
• Novel Molecular Generative AI 



Docking

45

The test dataset is PDBBind 

2020 core set 285 complexes

AutodockVina 

https://www.ncbi.nlm.nih.gov/pm

c/articles/PMC3041641/ (25K 

citations)

DiffDock: 

https://arxiv.org/abs/2210.01776

DOCK 6: 

https://onlinelibrary.wiley.com/do

i/abs/10.1002/jcc.23905

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041641/
https://arxiv.org/abs/2210.01776
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23905


Docking: AF3 Results

46
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Scoring versus Binding Energies



Virtual Screening

• Significantly outperforms the rest on new 
target proteins not seen during the training

• IGN was trained on DUD-E dataset, which 
contained major overlap with the target 
proteins of DEKOIS2.0 benchmark 

Results as reported in “Jiang, Dejun, et al. "Interactiongraphnet: A novel and efficient deep graph representation learning 

framework for accurate protein–ligand interaction predictions." Journal of medicinal chemistry 64.24 (2021)”



Property predictors
logS

Rank Model MAE

1 Biosim Props 0.525

2 Chemprop-RDKit 0.762

3 AttentiveFP 0.776

4 Chemprop 0.818

5 RDKit2D + MLP (DeepPurpose) 0.827

6 Basic ML 0.828

7 GCN 0.907

8 NeuralFP 0.947

9 CNN (DeepPurpose) 1.023

1. TDC.Solubility_AqSolDB 
2. Ulrich N., Goss K. U., Ebert A. Exploring the octanol–water partition coefficient dataset using deep 
learning techniques and data augmentation // Communications Chemistry. – 2021. – Т. 4. – №. 1. –
С. 90.
3. TDC.Lipophilicity_AstraZeneca

logP

Rank Model RMSE SAMPLE6

1 OCHEM 0.34 0.49

2 Biosim Props 0.449 0.421

3 DNN(taut) 0.47 0.33

4 DNN(mono) 0.50 0.31

5 ACD/GALAS 0.50 0.51

6 ALOGPS 0.50 0.45

8 KOWWIN 0.65 0.53

9 JChem 0.72 0.39

logD

Rank Model MAE

1 Biosim Props 0.425

2 Chemprop-RDKit 0.466

3 Chemprop 0.469

4 BaseBoosting 0.479

5 ContextPred 0.535

6 GCN 0.541

7 AttrMasking 0.547

8 NeuralFP 0.563

9 AttentiveFP 0.572
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Case Studies JAK2 (PK Domain)
A comparison to 
Schrödinger’s GLIDE

CD73
Cell surface-anchored 
nucleotidase implicated 
in cancer

KRAS (G12D)
GTPase and classical 
challenging target

Beyond nucleotide 
binders: DPP4 

Tests with small scale virtual screens to 
answer the following questions:

Can we rediscover known binders and 
drugs?

How do we perform compared to other 
tools?
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Undruggables: targeting KRAS G12D
The GTPase mutated in 15-25% of all cancers and classical challenging target

Mutation of G12D increases P-loop 
flexibility, lowering binding to GAP 
effectors prolonging GTP hydrolysis, 
and extending KRAS activation

Targeting KRAS is 
challenging due to 
lack of apparent 
binding interfaces

Given the critical functions of KRAS, 
drugs must target only mutant form

Only a handful are in development:

Source: Chen et al, 2013 Source: Zhu et al, 2022

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055793
https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-022-01629-2
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Our performance persists on KRAS G12D

Methods:
• Dock a larger library:

• 100,000 random molecules from 
Enamine’s virtual library

• 16 experimentally-validated 
binders

• Rank compounds based on 
score of top docking pose

• Top 100 enrichment factors 
• BiosimAI: 813x
• Autodock Vina: 313x

BiosimAI: Autodock Vina:
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We rediscover assets in development for KRAS G12D

BiosimAI: Autodock Vina:The top hit is MRTX1133, a Phase I 
asset from Mirati Therapeutics

These compounds are 
patented



An AI Assistant Interface to Democratize Access




