

Simulating Life Processes Across Scales

DeepOrigin's Simulation Stack

We build atomistic and coarse-grain models across **biological scales** to address every stage of drug discovery and find drugs faster.

In Development

Outline

- Mesoscale modeling of the cytoskeleton and towards simulating eukaryotic cells
- Modeling protein complexes: For some important drug discovery tasks, AWSEM leaves AlphaFold2 in the dust
- Virtual Screening of Small Molecules

MEDYAN Work

James Komianos

Aravind Chandrasekaran

🧉 Qin Ni

🖌 Haoran Ni

NSF CHEMISTRY: CTMC NSF PHYSICS: POLS

Carlos Floyd

T-cell activation Eric Betzig

We would like to simulate cellular dynamics based on the microscopic laws of physics and chemistry

Theory

A Whole-Cell Computational Model Predicts Phenotype from Genotype

Jonathan R. Karr,^{1,4} Jayodita C. Sanghvi,^{2,4} Derek N. Macklin,² Miriam V. Gutschow,² Jared M. Benjamin Bolival, Jr.,² Nacyra Assad-Garcia,³ John I. Glass,³ and Markus W. Covert^{2,*} ¹Graduate Program in Biophysics

MEDYAN: Mechanochemical Dynamics of Active Networks

- 3D simulation region is divided into compartments.
- Diffusion (Actin, Capping protein, Arp2/3) between compartments.
- Chemical reactions in compartments:
 - Polymerization, Depolymerization, Capping, Branching...
- Monte Carlo algorithm to generate stochastic trajectories

 K. Popov, J. Komianos, G. A. Papoian, PLOS Comp Bio, 2016, DOI:10.1371/journal.pcbi.1004877
 L. Hu and G. A. Papoian, Biophys. J.; 2010, 98,1375
 L. Hu and G. A. Papoian, J. Phys.: Condens. Matter; 2011, 23, 374101

The reaction-diffusion master equation

- Discretize space into locally well-mixed compartments (massaction kinetics)
- Includes both chemical reactions within compartments and diffusion between compartments
- Simulated using accelerated Gillespie algorithm variant (NRM)

Spatially resolved chemistry

🖉 K. Popov, J. Komianos, G. A. Papoian, PLOS Comp Bio, 2016, DOI:10.1371/journal.pcbi.1004877

MEDYAN: Mechanics

Finite-width Filament Model

- Designed a filament model that includes shearing, twisting, stretching, and bending
- Built on the Cosserat theory of elastic rods
- Spline functions used to parameterize rod configuration

C. Floyd, H. Ni, R. Gunaratne, R. Erban, G. A. Papoian, "On Stretching, Bending, Shearing and Twisting of Actin Filaments I: Variational Models", J Chem Theor Comp, (2022), 18, 4865

Carlos Floyd

Haoran Ni

Radek Erban

Membrane crumpling in hyperosmotic solution

Tension:
$$F = k_s/(2A_0)(A-A_0)^2$$

Bending: $F = \int 2k_b(H-c_0)^2 dA$
Volume Conservation: $F = k_V/(2V_0)(V-V_0)^2$

Volume Exclusion:

$$F = k_{vol} \int dA / |r_b - r_p|^4$$

Surface Reaction-Diffusion: Receptor Signaling & Clustering

Time Evolution: An Adiabatic Ansatz

Popov K, Komianos J, and Papoian GA, PLoS Comp. Biol. 2016

Timings on 1 core of 1 CPU

Wall times required to obtain 1000 seconds long trajectories

Actin 20 muM a:A 0.01 M:A 0.05	# of actin monomers	# of polymer segments	MEDYAN 3.2	MEDYAN 4.0	MEDYAN 5.1	MEDYAN Julia		
V = 1 μm ³	12,000	300	12.5h	2.5h				
V = 8 μm³	96,000	2,400	8d	1.5d		N/A	U U	Nathan Zimmerberg
V = 27 μm³	270,000				12d	22h		
V = 125 μm ³	1,500,000	38,000	360d	27d				

Mouse embryonic fibroblasts have a volume of approximately 1000 μ m³

Axon Growth Cone Simulation

- 279283 actin monomers.
- The initial conditions and parameters for these simulations were ported from the 5 nM Arp2/3 simulations from:
 - Aravind Chandrasekaran et al., MBoC 33.11 (2022)
- A MEDYAN.jl simulation takes 3 days to run on a single core with 4 GB memory.
- Previously took multiple weeks using C++ version.

Home Documentation Download Publications Gallery Contact

MEDYAN - Mechanochemical Dynamics of Active Networks

Welcome to the webpage of the MEDVAN, an efficient and scalable computational model for mechanochemical simulations of active matter networks created by the Papolan lab at the University of Maryland. This webpage contains documentation and examples for the MEDVAN software package, which is implemented in C++. The source code for this package is downloadable for scientific use.

Background

The cell cytoskeleton plays a key role in fruman biology and disease, contributing ubiquitously to such important processes as embryonic development, wound repair and cancer metastasis. The Papolan laboratory is interested in gaining desper understanding of the physical chemistry behind these complex, far-from-equilibrium mechanochemical processes.

Read more

Latest news

March 2022 - MEDYAN 5.4.0 is published. [Download] March 2022 - MEDYAN 5.3.0 is published. February 2022 - MEDYAN 5.2.1 is published. December 2021 - MEDYAN 5.1.0 is published. August 2021 - Our paper titled Membrane-MEDYAN: Simulating Deformable Vesibles Containing Complex Cytosheledal Networks was published in JPCB and chosen as the cover. July 2021 - MEDYAN 5.0.0 is published. July 2021 - MEDYAN 5.0.0 is published. July 2021 - MEDYAN 4.3.0 is published. July 2021 - MEDYAN 4.2.0 is published. July 2021 - MEDYAN 4.2.0 is published. March 2021 - Qur paper titled Segmental Lennard-Jones Inferactions for semi-flexible polymer networks was published in Molecular Physics.

Funding sources

September 30, 2021 Volume 125 Number 38 pubs.acs.org/JPCB

Membrane-MEDYAN: Simulating Deformable Vesicles Containing Complex Cytoskeletal Networks

Published as part of The Journal of Physical Chemistry virtual special issue "Dave Thirannalai Festschrift". Haoran Ni and Garegin A. Papolant"

City Day J. Post David A 2011, 125, 10710-10710

(a)

Co Read Colors

 $\chi = 1/\sqrt{2}$ $\chi = \sqrt{2}$ $\chi = 1$

www.acs.org

Arbit

Towards Simulating a Whole Cell

Towards Simulating a Whole Cell

Entropy Production and Avalanches in Actomyosin Networks

- Measuring entropy production in active matter phases is a necessary step to understand their self-organization
- Experimental measurements of forces produced by migrating cells suggests that dissipation of mechanical energy during migration is poorly understood
- We developed an algorithm in MEDYAN to quantify dissipation rates

Floyd C, Papoian GA, Jarzynski C, Interface Focus, 10.1098/rsfs.2018.0078, (2019)
Liman, ..., Wolynes, Levine, Cheung, PNAS, v 117, 10825, (2020)

RESEARCH ARTICLE

Understanding cytoskeletal avalanches using mechanical stability analysis

Carlos Floyd, C Herbert Levine, C Christopher Jarzynski, and C Garegin A. Papolan + See all authors and affiliations

PNAS October 12, 2021 118 (41) e2110239118; https://doi.org/10.10/3/pnes.2110239318

- In vivo studies of cytoskeletal motions reveal heavy-tailed distributions of event sizes - similar to Gutenberg-Richter law
- "Cytoquakes" have been introduced as large, sudden events in cytoskeletal dynamics

Shi, Y., et al., PNAS (2019)

Cal Floyd

Soft and Stiff Vibrational Modes

- Numerically constructed Hessian matrix of U to find the vibrational modes \mathbf{v}_k with stiffness λ_k and delocalization r_k
- Soft modes more spatially spread out than stiff modes

Avalanches in in vitro Actomyosin Systems

with MEDYAN. (Papoian Lab) (right).

It to that Solution Nathan Zimmerberg

Patrick Kelly

Murrell

Myosin walking on two parallel filaments with a third perpendicular filament blocking its path leads to motor stalling

This kind of motor stalling has been observed experimentally

Melli, L., et al. (2018) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829915/#video3

MEDYAN Application: Dendritic Spine

Dendritic Spine: A small protrusion on a neuron's dendrite. Most spines have a bulbous head (the spine head), and a thin neck. Our study concentrated on the post-synaptic spine consisting of branched F-actin, membrane and membrane proteins.

Cadherin: intercellular an protein anchored to F-actin via catenin proteins. the positioned to dynamically regulate spine actin cytoskeleton and is required for the growth and persistence of a spine.

[Bozdagi, O., 2010. Persistence of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin. Journal of Neuroscience, 30(30), pp.9984-9989.]

[Gumbiner, B.M., 2005. Regulation of cadherinmediated adhesion in morphogenesis. Nature reviews Mala and an a like a large (0) and (000 004)

Korobova, F. and Svitkina, T., 2010. Molecular architecture synaptic of actin cytoskeleton in hippocampal neurons reveals a mechanism dendritic of spine morphogenesis. Molec ular biology of the cell, 21(1), pp.165-176.

[Bucher, M., Fanutza, T. and Mikhaylova, M., 2020. Cytoskeletal makeup of the synapse: Shaft versus spine. Cytoskeleton, 77(3-4), pp.55-64.]

Simplified spine model

[Efimova, N., 2017. βIII spectrin is necessary for formation of the constricted neck of dendritic spines and regulation of synaptic activity in neurons. *Journal of Neuroscience*, *37*(27), pp.6442-6459.]

Spectrin is model as slip bond. Spectrin distributes from the base of the neck to the base of the head.

Time Evolution of A Spine: with both spectrin and cadherin, a mushroom-like shape is achieved

200nm

Actin filaments

Cadherin distribution

Effects of Arp2/3 Distribution

The closer the Arp2/3 area to the PSD, the larger the spine head is. And the upwards branching is one of the reason for a expansion of spine upper surface and contributes to the negative curvature of the post-synaptic membrane.

Filament Severing by Cofilins

Cofilins sever actin filaments by depolymerizing sequences to free monomers. The structure of cytoskeleton can be obviously changed.

Single F-actin to F-actin bundle

Cytoskeleton is discreted

Cofilins play a key role in Long-term Potentiation (LTP)

[Hlushchenko, I., Koskinen, M. and Hotulainen, P., 2016. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity. *Cytoskeleton*, *73*(9), pp.435-441.] [Ohashi, K., 2015. Roles of cofilin in development and its mechanisms of regulation. *Development, growth & differentiation*, *57*(4), pp.275-290.] A tug of war between filament treadmilling and myosin induced contractility generates actin ring

Thanking colleagues at DeepOrigin and Peter

Michael Antonov Co-Founder and CEO

Aram Davtyan Scientific Development

Garik Petrosyan

Grigor Arakelov Partnerships

Hayk Saribekyan Scientific Development

Natalie Ma Business Development

Ashot Papoyan COO-Scientific Development

Peter Wolynes (Rice U)

DeepOrigin's Simulation Stack

We build atomistic and coarse-grain models across **biological scales** to address every stage of drug discovery and find drugs faster.

ML models have not solved key challenges in the study of proteins

- Can predict:
 - Static folded structure Ο
 - Some structural changes due to mutation (e.g., single Ο amino acid substitution)
- Cannot predict very well:
 - Protein-protein interactions (e.g., dimer and multimer Ο formation, antibody interactions)
 - Interaction with other macromolecules (e.g., DNA, Ο within a lipid membrane)
 - Actual protein folding pathways and kinetics 0
 - Ο **Protein dynamics**

ML models are incredibly useful, but not for every problem^{*}

opertment of Electrics, University of Oxford, Debud GRI SPE, UK

"Is whole convegendence should be addressed Associate Faltar Lances Cowwy

anal & Reactive 3, 357, record at factoring 11, 307, addpted decision to Recentler 19, 307

Abstract

Sommery: Metivation, Predicting the native state of a protein has long been considered a gateway proteiner for undertanding protein folding. Recent advances in structural modeling driven by deep learning have achieved unprecedented uncess at predicting a protein's evolut structure, but it is not stear if these models are learning the structure of how preing dynamically fold into their equilibrium structure or are just accurate knowledge-based predictors of the final state. in this work, we compare the partiways generated by state-of-the-art protein structure prediction methods tel data about protein folding pellwave. The methods considered were AlphaFrid 2. RearTIAfrid. ptorX, DMMold, EVfold, SAINT2 and Rosetta, We find evidence that their simulated dynamics capture ration about the folding pathway, but their predictive ability is worse than a binist classifier using agnostic leatures like chain length. The folding trajectories produced are also uncorrolated with experrental observables such as intermediate structures and the folding rate constant. These results suggest that recent dwances in structure prediction do not wet provide an enhanced understanding of protein holding

What ML cannot predict is critical to many R&D problems

Optimization of protein-protein interactions (e.g., antibody design)

Optimizing macromolecular interactions (e.g., nanopore sequencing)

Predicting changes in conformation from binding (e.g., peptide drug design)

Predicting structural changes from larger or multiple mutations (e.g., target discovery, drug design)

Modeling complex therapeutics with multistep rate constants (e.g., PROTACs, molecular glues)

Current Landscape in Protein Structure Prediction

Multiple sequence alignment (MSA)-based approaches

- AlphaFold2/3 (Google)
- RoseTTAFold (Baker lab)

Pros:

- High accuracy for natural proteins that have many analogs in sequence databases (MSA data)
- Use both MSA and structural data for training
- Database of ~200 million predicted structures available

Cons:

- Costly to train and run predictions
- Provide single or small number of conformation
- Conformations may not be biologically relevant
- Do not work well for sequences with no MSA data (antibodies, orphan and synthetic proteins).
- Not well applicable to sequences with mutations
- Not well suited for prediction of protein-protein binding and multi-protein assembly

Large language model (LLM)-based approaches

- ESMFold (Facebook)
- OmegaFold (Helixon)

Pros:

- Predictions are an order of magnitude faster to run
- Work better for synthetic, mutant sequences and orphan proteins due to using single sequence input for training
- Database of ~600 million predicted structures available

Cons:

- Training is very costly (15 billion parameters)
- Provide single or small number of conformation
- Conformations may not be biologically relevant
- Lower accuracy for sequences with MSA data
- Not well suited for prediction of protein-protein binding and multi-protein assembly
- Only 1/3 of the database is considered of "high accuracy"

The combination of physical and bioinformatics potentials allows for *de novo* prediction of protein structure

The superposition of native and predicted structures

Davtyan, Schafer, Zheng, Clementi, Wolynes, Papoian, J. Chem Phys B, 116, (2012), 1709–1715

AWSEM demonstrates exceptional performance in predicting protein-protein interactions

DeepOrigir

 Following Zheng, Schafer, Davtyan, Papoian, Wolynes,
 PNAS, 109, (2012), 19244-19249

Crystal structure
Predicted

Application of AWSEM to complex problems: Design of PROTACs and molecular glues

- Targeted protein degradation and modification is the fastest growing area in drug discovery with over 25 candidates in clinical trials for various diseases.
- However, development and optimization of PROteolysis Targeting Chimeras (PROTACs) and molecular glues remains challenging, especially in absence of structural data.
- Accurate binding simulations with AWSEM can enable rational development and optimization of PROTACs and molecular glues.
- The ability to sample dynamics and assembly of large protein complexes is key to address unsolved problems similar to this.

Preliminary results of binding prediction between E3 ligase and target proteins

Q over 0.6 indicates high degree of similarity to the native structure

Overlap with native complex of Cereblon and BRD4^{BD1} mediated by dBET6 PROTAC PDB ID: 6BOY

RMSD: 1.5 Å

The native structure is shown in white and prediction in orange

E3 ligase/target complex predictions: AWSEM outperforms AlphaFold2

Virtual Screening

- Problem Current VS tools produce mostly false positives and likely miss highest quality binders
- How BiosimVS addresses this problem:
 - Provides new algorithms with significantly better accuracy than then current SOTA
 - Efficiently screens multibillion ligand databases
 - Optimizes for binding affinity and desirable molecular properties
 - Highly efficient: Screening of 5B ligand library in 3 days
 - SOTA property predictors for logS, logP, logD, hERG and other molecular properties
 - Novel Molecular Generative Al

Docking

The test dataset is PDBBind 2020 core set 285 complexes

AutodockVina https://www.ncbi.nlm.nih.gov/pm c/articles/PMC3041641/ (25K citations) DiffDock: https://arxiv.org/abs/2210.01776 DOCK 6: https://onlinelibrary.wiley.com/do i/abs/10.1002/jcc.23905

Docking: AF3 Results

Scoring versus Binding Energies

Virtual Screening

- Significantly outperforms the rest on new target proteins not seen during the training
- IGN was trained on DUD-E dataset, which contained major overlap with the target proteins of DEKOIS2.0 benchmark

Results as reported in "Jiang, Dejun, et al. "Interactiongraphnet: A novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions." Journal of medicinal chemistry 64.24 (2021)"

Property predictors

	logS			logD		
Rank	Rank Model MAE		Rank	Model	MAE	
1	Biosim Props	0.525	1	Biosim Props	0.425	
2	Chemprop-RDKit	0.762	2	Chemprop-RDKit	0.466	
3	AttentiveFP	0.776	3	Chemprop	0.469	
4	Chemprop	0.818	4	BaseBoosting	0.479	
5	RDKit2D + MLP (DeepPurpose)	0.827	5	ContextPred	0.535	
б	Basic ML	0.828	6	GCN	0.541	
7	GCN	0.907	7	AttrMasking	0.547	
8	NeuralFP	0.947	8	NeuralFP	0.563	
9	CNN (DeepPurpose)	1.023	9	AttentiveFP	0.572	

logP				
Rank	Model	RMSE	SAMPLE6	
1	OCHEM	0.34	0.49	
2	Biosim Props	0.449	0.421	
3	DNN(taut)	0.47	0.33	
4	DNN(mono)	0.50	0.31	
5	ACD/GALAS	0.50	0.51	
6	ALOGPS	0.50	0.45	
8	KOWWIN	0.65	0.53	
9	JChem	0.72	0.39	

1. TDC.Solubility_AqSolDB

2. Ulrich N., Goss K. U., Ebert A. Exploring the octanol-water partition coefficient dataset using deep learning techniques and data augmentation // Communications Chemistry. – 2021. – T. 4. – No. 1. – C. 90.

3. TDC.Lipophilicity_AstraZeneca

Case Studies

Tests with small scale virtual screens to answer the following questions:

Can we rediscover known binders and drugs?

How do we perform compared to other tools?

JAK2 (PK Domain)

A comparison to Schrödinger's GLIDE

CD73

Cell surface-anchored nucleotidase implicated in cancer

KRAS (G12D)

GTPase and classical challenging target

Beyond nucleotide binders: DPP4

Undruggables: targeting KRAS G12D

The GTPase mutated in 15-25% of all cancers and classical challenging target

Targeting KRAS is challenging due to lack of apparent binding interfaces

Given the critical functions of KRAS, drugs must target only **mutant form**

Only a handful are in development:

Source: Zhu et al, 2022

Source: Chen et al, 2013

Our performance persists on KRAS G12D

Methods:

- Dock a larger library:
 - 100,000 random molecules from Enamine's virtual library
 - 16 experimentally-validated binders
- Rank compounds based on score of top docking pose
- Top 100 enrichment factors
 - BiosimAI: 813x
 - Autodock Vina: 313x

BiosimAI:

	Molecule ID	BiosimAl Score		MoleculeID	Vina Score
1	CHEMBL5081048	-12.07850075	1	PV-009984343122	-11.90
2	CHEMBL4863371	-11.93155384	2	Z5588179967	-11.90
3	CHEMBL4867851	-11.54409218	3	Z3000099585	-11.80
4	CHEMBL4876243	-11.39323235	- A-	CHEMBL4867851	-11.70
5	CHEMBL4874297	-11.37298679	5	Z7603912964	-11.70
6	CHEMBL4859236	-11.35258293	6	CHEMBL4863371	-11.70
7	CHEMBL4855757	-11.30750275	7	Z4564240967	+11,60
8	CHEMBL4858364	-11.23495483	8	CHEMBL4863339	-11.60
9	CHEMBL4857719	-11.22687531	9	PV-009757158782	-11.60
10	CHEMBL4872788	-11.02645397	10	Z2225400372	-11.60
11	CHEMBL4876040	-10.9985075	11	Z1067622164	-11.50
12	CHEMBL4857438	-10.8617363	12	Z6297285602	-11.50
13	CHEMBL4863339	-10.62152958	13	PV-009970661431	-11.50
14	Z2518863178	-10.33911133	14	PV-009091048644	-11.50
15	PV-010050840864	-10.19663048	15	PV-006906778392	-11.40
16	PV-010058741110	-10.18711281	16	Z2980606341	-11.40
17	PV-007134722727	-10.16457748	17	PV-006255799432	-11.40
18	PV-006134781118	-10,15623856	18	Z7614130814	-11.30
19	PV-008998021938	-10.09503746	19	PV-008670150797	-11,30
20	Z2127055580	-10.08419609	20	PV-006151853477	-11.30

Autodock Vina:

We rediscover assets in development for KRAS G12D

The top hit is MRTX1133, a Phase I asset from Mirati Therapeutics

These compounds are patented

BiosimAI:

	Molecule ID	BiosimAl Score
	CHEMBL5081048	-12.07850075
2	CHEMBL4863371	-11.93155384
3	CHEMBL4867851	-11.54409218
4	CHEMBL4876243	-11.39323235
5	CHEMBL4874297	-11.37298679
6	CHEMBL4859236	-11.35258293
7	CHEMBL4855757	-11.30750275
8	CHEMBL4858364	-11.23495483
9	CHEMBL4857719	-11.22687531
10	CHEMBL4872788	-11.02645397
11	CHEMBL4876040	-10.9985075
12	CHEMBL4857438	-10.8617363
13	CHEMBL4863339	-10.62152958
14	22518863178	-10.33911133
15	PV-010050840864	-10.19663048
16	PV-010058741110	-10.18711281
17	PV-007134722727	-10.16457748
18	PV-006134781118	-10,15623856
19	PV-008998021938	-10.09503746
20	Z2127055580	-10.08419609

Autodock Vina:

	MoleculeID	Vina Score
1	PV-009984343122	-11.90
2	Z5588179967	-11.90
3	Z3000099585	-11.80
4	CHEMBL4867851	-11.70
5	Z7603912964	-11.70
6	CHEMBL4863371	-11.70
7	Z4564240967	+11.60
8	CHEMBL4863339	-11.60
9	PV-009757158782	-11.60
10	Z2225400372	-11.60
11	Z1067622164	-11.50
12	Z6297285602	-11.50
13	PV-009970661431	-11.50
14	PV-009091048644	-11.50
15	PV-006906778392	-11.40
16	Z2980606341	-11.40
17	PV-006255799432	-11.40
18	Z7614130814	-11.30
19	PV-008670150797	-11,30
20	PV-006151853477	-11.30

An Al Assistant Interface to Democratize Access

O ALL BRANCH MANAGEMENT

me larer

STATISTICS.

Instantion for the second

Street of Lot of

Distance in case of the local division of the

Nageriter, Bergstung

Distant Statement Name (178) With

Convertances .

Overlawing !

POSTING The Designed

Real Protonty Passing

South Address No. 2 (1973)

Andreak and provide a first state

PER Droppin Apparent

Street State Report al

Resolution of the local sector

Postan Parket Spectrum

Lord 1988 Press.

Columnation in the second

Billion Anderstant

The ADMET profile for Leftence is an Informa-

- + LagP (ing partition (partition)) -0.25867
- Logi (aquesos ambrida (M) -0.42081
- LogD (Antribution soufficient): 0.15089

 MBS Mocker Healthood: 0.2001 (Instituted that it will block the feature stream a get get Related Gene)

- CYP450 bloding probabilities

- + 1A7:0.10237
- · 2019 0.00042095
- + 209-0100014036
- · 304:0.00022039
- 364 0.00003388

Holecular weight: 191.08 gived These values provide lengths into the physical and balogical properties relevant to the physical challes of collines.

C Rhashik Sedatyae What are its dog likeness and synthesizability scores?

Content Assistant

The drug likeness and synthesiaentity scores for caffeine are as follows:

 Drug Skenaka (QED). 8.13845 (Quantitative Estimate of Orag Standard sciences a scalar from 2 to 1, higher is befor).

 ByrthesisalsBity (SAX): 2.258 (Serthetic Accessibility even on a serie from 1 to 10, with higher scares indicating backer to synthesise)

duck the memory to red packet

Drawing materials

Calculating resocutor weight

assessing synthesisticity of the resistivity

How can I help you today?

Find pockets of 1eby protein

How similar are caffeine and aspirin molecules ?

Show me functional groups of Aspirin

Which of these molecules is more drug-like ? [C=CCc...

•

Workspace