Uncovering the association mechanism between two intrinsically flexible proteins

Roberto K. Salinas, IQUSP

- Bacteria use a variety of Secretion Systems to transport macromolecules across the cellular envelope
- Among them, the T4SS translocates DNA (conjugation systems) or proteins (effector translators)
- T4SS are nanomachines with 1 3 MDa formed by 11 VirB subunits (VirB1 -VirB11)
- Involved in the spread of antibiotic resistance and infection by pathogens

Mace et al. (2022) Nature 607: 191 (PDB: 7041, 703V, 703T, 703J)

The bacteria Xanthomonas citri contains one T4SS locus in the chromosome

Xanthomonas citri cromossomal virB locus (T4SS)

Xanthomonas citri VirB7 is larger than the canonical VirB7

Xac B7		22	CATK <mark>PAPD</mark> FGGRWKH <mark>VN</mark> HFDI
E.coli	в7	15	CSSGHKPPPEPDWSNT-VPVNKTI
_			
Xac B7		92	PVSAISTTSVQQAATELSAVYAAQO
E.coli	в7		

EAPTEIPLYT<mark>S</mark>YTYQATPMDGTLKTMLERWAADSNMQLSYNLPSDYTLIG PVDTQGGRNE<mark>S</mark>------

GVSVSVSANKLLVQPVPVSSGAKL 139

The T4SS_{XAC} secretes toxins that kill other gram-negative bacteria on a contact-dependent basis

Diorge Souza et al. (2015) Nature Commun. 6: 6453

Xanthomonas citri VirB7 is larger than the canonical VirB7

Xac B7		22	CATK <mark>P</mark> APDFGGRWKH <mark>VN</mark> HFDEA
E.coli	в7	15	CSSGHKPPPEPDWSNT-VPVNKTIPV
Xac B7		92	PVSAISTTSVQQAATELSAVYAAQGV
E.coli	в7		

Souza et al. (2011) PLoS Pathogens 7: e1002031

PTEIPLYTSYTYQATPMDGTLKTMLERWAADSNMQLSYNLPSDYTLIG DTQGGRNES------

SVSVSANKLLVQPVPVSSGAKL 139

The C-terminal domain is absent in the other VirB7 proteins

The disordered VirB7 N-terminal region binds to the VirB9 C-terminal domain forming a rigid complex

Oliveira et al. (2016) Structure

VirB7 N-terminal tail folds into a short ß-strand upon binding to the VirB9 C-terminal domain

Oliveira et al. (2016) Structure

Qualitative analysis of the VirB9 C-terminal domain HSQC spectrum indicates that this domain is highly flexible in the unbound state

Oliveira et al. (2016) Structure

may significantly affect the NMR line shapes

Minor ("invisible") population

Conformational and chemical exchange processes (ex. association and dissociation)

Major ("visible") population

NMR peaks may become broader or sharper depending on the exchange rate

occur at the chemical shift time scale

The linewidth of NMR signals may contain information on dynamic processes that

How does VirB7 and VirB9 recognize each other despite being highly flexible?

- Angie Dàvalos (IQUSP)
- Dr. José David Rivera Echeverri (IQUSP)
- Denize C. Favaro (IQUSP) \bullet
- Iolanda Cuccovia (IQUSP)
- Chuck Farah (IQUSP)
- Ronaldo Junio (UFTM)

Davalos et al. (2024) ACS Chemical Biology

VirB7^{NT} CD spectrum is typical of a random coil peptide The number of VirB9^{CT} residues in β -type conformation at the bound and unbound states differ by 7

Canonical VirB7 VirB7^NT

CD spectral deconvolution

Secondary structure	Unbound VirB9 ^{c⊤} (%)	Unbound VirB7™ (%)
a-helix	0	0.04
β-type	37	21
turns	26	16
rc	36	58

The number of VirB9^{CT} residues in β-type conformation in the bound and unbound states differ by 7

VirB9^{CT} dynamics becomes more restricted at low temperatures

Increased spectral quality at 7 $^{\circ}$ C allowed us to obtain backbone resonance assignments for VirB9^{CT} in the unbound state

Analysis of NMR chemical shifts using TALOS indicated that most of the VirB9 B-strands were already formed in the unbound state, with the exception of B1 and B2 that could not be assigned

^{15}N chemical shifts at the invisible $\beta1$ and $\beta2$ (in the unbound state) were obtained using CEST (at 35 °C)

F237

$\beta 1$ seems to be disordered while $\beta 2$ is folded in the unbound state

VirB9^{CT} in the unbound state

The observation of multiple unbound state δ_{15N} leads to the question of whether VirB7^{NT} binds a "bound-like" VirB9^{CT} conformation?

Protein association kinetics was followed by fluorescence stopped flow at 25 and 35 °C under excess of VirB7^{NT} (left) or VirB9^{CT} (right)

Binding follows a conformational-selection mechanism

Binding follows a conformational-selection mechanism, however an additional event is observed under excess of VirB9^{CT}

25°C

35°C

Modeling the binding association mechanism using coarse grained simulations

Ronaldo Junio de Oliveira Universidade Federal do Triângulo Mineiro

Conclusions

- In the absence of VirB7^{NT}, VirB9^{CT} β 1 unfolds
- Binding follows a conformational selection mechanism at 25 °C
- At higher temperatures, the populations of other conformational states increase, favoring alternative binding pathways and leading to an encounter complex that subsequently folds to the native complex
- Binding involves a downhill trajectory on the funneled energy landscape as the two proteins search for the best intermolecular contacts

Acknowledgements

- Angie Dàvalos (IQUSP)
- Dr. José David Rivera Echeverri (IQUSP)
- Denize C. Favaro (NYU)
- Iolanda Cuccovia (IQUSP)
- Chuck Farah (IQUSP)
- Ronaldo Junio (UFTM)

Financial support: FAPESP 2017/17303-7; 2021/10577-0

