Probing the rapid chain dynamics of disordered proteins and nucleic acids with single-molecule spectroscopy

Ben Schuler

Dynamics from single-molecule FRET

Combining FRET and nsFCS for quantifying chain dynamics

Nanosecond fluorescence correlation spectroscopy (nsFCS)

 Ω

 τ (ns)

FRET efficiencies + fluorescence lifetimes

 \rightarrow Potential of mean force

 $F(r)$

Equilibrium distributions and reconfiguration dynamics

D, *τ^r*

 $g_{\rho A}(\tau) \propto \mathbf{1}^{\cdot} \mathbf{V}_{A} e^{\mathbf{K}\tau} \mathbf{V}_{D} \mathbf{p}_{ss}$

r

gii

 g_{DD}

 g_{AA}

 g_{AD}

 -200

Interpret dynamics in terms of diffusion in potential of mean force

Nettels *et al*. (2007) *PNAS* 104, 2655-2660 Gopich & Szabo (2008) *In*: Barkai *et al*., *World Scientific* Schuler *et al*. (2016) *Annu Rev Biophys* 45, 207-231

200

Holmstrom *et al*. (2018) *Meth Enzymol* 611, 287-325

 \rightarrow biological polyelectrolytes

Borgia, Borgia, Bugge *et al*., *Nature* 555, 61-66 (2018) Single-molecule FRET + nsFCS + circular dichroism + NMR (B. Kragelund) + simulations (R. Best): a highly disordered high-affinity complex

Dynamics of H1 and ProTα upon **phase separation** by complex coacervation

Banani et al., Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017)

→ Protein concentration in droplets: ~200 mg/ml →Bulk viscosity of droplets: ~300 mPa s

A. & M. Borgia Phase separation of H1 and ProTα

Single-molecule FRET in biomolecular condensates

Nicola Galvanetto

 \rightarrow Chain dynamics in the droplets surprisingly rapid

Bulk viscosity ~**300×** higher in the droplets Bulk viscosity

10x higher in the droplets

than in dilute solution

Chain dynamics only ~**3×** slower in the droplets than in ProTα-H1 dimer

\rightarrow Very high concentration of charged side chains in the dense phase (~1 M)

 \rightarrow Rapid exchange/dynamic shuffling between contacts enables extremely rapid local dynamics despite large bulk viscosity

Length scale-dependent effective viscosity in the dense phase

- \rightarrow Effective viscosity from translational diffusion (Stokes-Einstein) depends on length scale
- \rightarrow Motion on length scales \lt correlation length facilitated
- \rightarrow Described quantitatively based on depletion interactions (Tuinier 2006)
- → ProTα dimensions ≈ correlation length *ξ*
- \rightarrow ProT α part of the network,

but explains part of the discrepancy between chain dynamics and bulk viscosity

Enhancing nsFCS with nanophotonics

Limitations of nsFCS:

- dynamics ≲10 ns cannot be resolved (photon antibunching)
- long data acquisition times (typically ~10h)

Zero-mode waveguides (ZMW):

- ~7× photon rate increase \rightarrow reduced data acquisition time
- ~2× lifetime decrease
	-

Mark Nüesch

Nüesch, Ivanović et al. *JACS* 2022

Comparing nsFCS and FRET with all-atom MD simulations

All-atom explicit-solvent MD:

- Amber99SBws/TIP4P2005s (Best *et al.* (2014) *J Chem Theory Comput* 10, 5113)
- Explicit fluorophores (Best *et al*. (2015) *Biophys J* 108, 2721)
- with and without urea (Zheng *et al.* (2015) *J Chem Theory Comput* 11, 5543)
- Total simulation time 16 μs each condition

Miloš Ivanović with R. Best

Nüesch, Ivanović et al. *JACS* 2022

Nanosecond chain dynamics of single-stranded nucleic acids

Nüesch *et al. (2024) Nat Commun* 15, 6010

Absence of internal friction in ssRNA and ssDNA dynamics

Hierarchical chain growth and Bayesian esensemble reweighting (with L. Pietrek & G. Hummer) Pietrek *et al*. (2024) *J Chem Theory Comput* 20, 2246 Hummer & Köfinger (2015) *J Chem Phys* 143, 243150

 \rightarrow No detectable internal friction for homopolymeric ssRNA and ssDNA \rightarrow Hinge-like motion of stacked segments?

nsFCS provides access to rapid dynamics of unfolded and disordered proteins and nucleic acids, including complex environments, such as crowding, phase separation, live cells

nsFCS can be enhanced by nanophotonics in zero mode waveguides to probe dynamics in the low nanosecond range with 100x shorter data acquisition times

University of Zurich

nsFCS provides access to rapid dynamics of unfolded and disordered proteins, including complex environments, such as crowding, phase separation, live cells

nsFCS can be enhanced by nanophotonics in zero mode waveguides to probe dynamics in the low nanosecond range with 100x shorter data acquisition times

Molecular simulations ideally complement single-molecule spectroscopy

- \rightarrow Increasing quality of force fields for IDPs
- \rightarrow Increasing overlap between timescales in experiment and simulation
- \rightarrow Enable interpretation of data in terms of molecular mechanisms
- \rightarrow Single-molecule data provide useful benchmarks

Miloš Ivanović Nicola Galvanetto Mark Nüesch Alessandro Borgia Davide Mercadante Madeleine Borgia

Robert Best Aritra Chowdhury Andrea Sottini Pétur Heiðarsson Daniel Nettels

Jérôme Wenger Jean -Benoît Claude

INSTITUT

FRESNEL

MAX-PLANCK-INSTITUT

UNIVERSITY OF COPENHAGEN

FÜR BIOPHYSIK

Gerhard Hummer Lisa Pietrek

Birthe Kragelund Katrine Bugge Catarina Fernandes

novo nordisk fonden

CSCS entro Svizzero di Calcolo Scientifico **Swiss National Supercomputing Centre**

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

