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@ Or your favorite quantum mechanics textbook: Griffiths, Sakurai, ...
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Motivation

@ Scattering processes are a fundamental way of experimentally probing distributions and
properties of systems in several areas of physics

e Can you name a few examples?
e Low-energy quantum scattering theory
o What is low-energy?
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Introduction

@ What is scattering? @ Classical view
e Scattering is the interaction of an object with a
scattering center

e classical particle
e electromagnetic wave e scattering potential

e quantum particle

-
Scattering center

Griffiths
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Quantum scattering theory
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Introduction

Quantum scattering theory

@ Quantum view
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Quantum scattering theory

o Hypotheses
@ Elastic scattering
© Incident plane wave e
© Local and finite-ranged potential

ik-r

elkr

i) 2L N ek /(K k)
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Quantum scattering theory

o Hypotheses
@ Elastic scattering
© Incident plane wave e
© Local and finite-ranged potential

ik-r

ikr

i) 2L N ek eTf(k’, k)

@ Quantum mechanics: a scattering process is described as a transition from one quantum state
to another )
D) = If)

@ Assume |i) to be a plane wave |K) (free particle)

. ] h2k2
Holi) = Eili) = > [K)

@ Scattering is taken into account by introducing a potential V(r)

H=Hy+ V(r)
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Quantum scattering theory

@ Quantization of the scattering states

" eik-r

— NoKT _

(rlk) = Ne™™ = 3

@ We must take L — oo to guarantee the continuum character of the state at the end of our
calculations
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Quantum scattering theory

@ More hypotheses
@ Elastic scattering
© Incident plane wave in the z direction: e
@ Local, finite-ranged and spherically-symmetric potential V(r)

ikz

ikr

Ui(r,0) 2L A [e"kz + erf(e)]

o The finite range of the potential (and spherical symmetry) invite us to solve the Schrodinger
equation for V(0 < r <R) #0and V(r > R) =0

h2
2m

V% + V(r)y = Ey
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Partial waves expansion
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Spherical coordinates

@ Due to the spherical symmetry of V(r), it is convenient to employ spherical coordinates

2 2
ot (75) g + V)| 900.0) = EV(r0.0
@ L is the angular momentum operator
1 o . 0 1 0?
=12 <sin980 smG% + smzé?W)
@ Its z-component is given by o
L, = —ih—
o
e Construct a complete set of eigenfunctions related to H, L?, and L,
Hi(r,0,¢) = Ei(r,0,9),
L(r,60,9) = (1 + 1)R*)(r, 6, 9),
Lap(r,0,¢) = mhap(r,0, ¢)
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Spherical coordinates

@ We propose a separable solution of the form

1&(& 0, ¢) - Al(r)Ylm(ea ¢)

e To avoid taking the first radial derivative of A;(r), we define the “reduced” radial solution

u(r) = rA;(r) )
<jr2 +k - U(r) - 1(1; 1)> uy(r) =0

o k* =2mE/R?
o U(r) =2mV(r)/?
e [(I+ 1) is the “separation constant”
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Solution for r > R

@ Outside the potential range R, we must solve

a o, 0 I+1)
<dr2+k *M T T2 u(r) =0
@ The solution for r > R can be written in terms of the spherical Bessel functions j;(x) and n;(x)

w(r) = chrji(kr) + f rny(kr)

o Jolx) = o o) = 2
o jilx) = T — <=l o mi(x) =~ _ sinG)
o o) = 30 _ 2ol _ sint) o mlx) = ~dem) _ dsngn) e
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Spherical Bessel functions

o jols) = 5202 o nolr) =~
o ji(x) = thish _ cote) o ) = 5= _ st
. jz(x) _ 3sixr;(x) . 3cz§(x) . sir;(x) ° nz(x) _ _3c2§(x) _ 3Sixr;(x) + coi( )

First kind 7 Second kind ny

L
&

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 16/ 121



Quantum scattering theory Numerical Procedure Examples Formal scattering theory

Spherical Hankel functions

@ ji(x) and n;(x) are generalized sines and cosines

e It is more convenient to write the solution in terms of ’** /x to represent “incoming” or
“outgoing” spherical waves

e Similarly to ¢* = cos(x) + isin(x), we define the spherical Hankel functions as

hl(l)(x) :jl(x) + inl(x)
hl(z) (x) = ji(x) — iny(x)

1 ie™ 2 ie ™
oh(())(x):—T oh(())(x):7
° hgl)(x) = —e* i ° hgz) (%) = —e ™ &
o hgl)(x) — el X2+)3c3iX73 o h§2) (x) = —H x27z§x73

@ The solution for u;(r) can be written as
u(r) = Cfl)rhl(l)(kr) + cl(z) rhl(z) (kr)
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Free particle solution

ikz

The free particle solution in cartesian coordinates is a plane wave e

In spherical coordinates, ¢ = &7 3¢ contains all possible values of [

This can be expressed with Rayleigh’s formula:

o0

pikreosd _ Z i'(21 + 1)j;(kr)Py(cos 6)
1=0

Note that only j; appears. Physically, this is due to the divergence of n;(kr) at r = 0

In terms of the spherical Hankel functions:

rD (@) + B2 (x)
2

Jilx) =
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Asymptotic behavior

@ Let us analyze the asymptotic behavior (r — co)

h(l)(x) mﬂ) (7l-)l+1i

X
@)l e
l (X) — 1 T
@ The free-particle solution at r — oo is
1 > (214 1)
ikrcos  large r ik 1 —ik
erreos IZ(; > [e’ "—(=1)e r] P(cos )

@ The first term inside the square brackets represents an outgoing spherical wave, while the
second is related to an incoming spherical wave
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Asymptotic behavior

ikr cos 6

@ Motivated by the expansion for e , we write the scattered solution for every r > R as

0(r,0) = Ni 121+ 1)) py(cos )
1=0

r

@ And the asymptotic behavior

rger o~ QLHD T () i @) ik
(r,0) N; = [efVel — (—1)lefPe™] Py(cos 0) *)
@ Let us compare with

o0

) ; 21+ 1 ; '
pikreos o large r Z ( 2'4k_ ) [e* — (=1)!e™™*] Py(cos ) ()
17,94
1=0

@ (xx) describes the asymptotic behavior of the wave function for a plane wave without being
scattered, while (x) does the same, but in a situation where scattering could have taken place
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Phase shift

@ We introduce a new quantity related to the ratio between the constants

i

ﬁ _ S[(k) _ €2i6[(k)
1

o Expressing the asymptotic wave function in terms of the phase shift

arge r > 2 1 . . 9
P(r,0) Laer, le;( lﬂj; )Cl(z) &0k (=1)le=* | Py(cos 6)

@ Now we have everything we need to connect with the asymptotic wave function obtained
before we restricted to spherically-symmetric potentials
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Numeric

@ We know that

e Expanding e/©*

Ui (r, 0) 1erQﬂu\/{ [i (2l.+ 1) (¢ — (=1Yle™*") x Py(cos 6)

eikr
+£(0) }

o
@ Comparing with

P(r, 0) LI NZ %—f;l)cl(z) [ezj&leikr - (—l)le*"k’} Pi(cos )
1=0

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 22/121



Numeric

Phase shift

@ Collecting the terms with /" allows us to write the scattering amplitude as a function of the
phase shift
o 2161 _ 1)
Z (21+1 P(cosf)
=0

@ The factor (e* — 1) /2ik is referred to as the partial wave amplitude f;(k), which may be

rewritten as . .
X — 1 ePiging, 1

filk) = —— =% = kcot o — ik

e In terms of S;(k) |
Si(k) = 1+ 2ikfy(k) = &*®)
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Physical meaning of the phase shift

Si(k) = 1+ 2ikfy(k) = *®

9;(k) is the difference between the phases of the incident and the scattered function

The probability is conserved during the scattering

o The only thing that can change is the phase of the wave function
o If V = 0: free particle

o §i(k) =0,fi(k) =0
If V # 0: solution for r < R depends on the details of V

e but for » > R we have a free particle with a “shifted” phase

Defining the phase shift allows us to reduce the scattering problem to calculate a single
quantity, &;(k)
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Quantum scattering

@ go(r) is the free-particle solution
@ up(r) is the solution in the presence of a scattering potential

— uy(r)

== lr)

@ A repulsive potential (V > 0) “pushes” the particle away
@ An attractive potential (V < 0) “pulls” the particle towards the origin
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Numeric Exa

Computing the phase shift

@ Logarithmic derivative

@ To compute the phase shift, we define the dimensionless ratio r x u/(r) /u(r)

= e

e RE=lim.,cR+te

@ The radial solution at » > R is

1 - 1 )
u(r) = EreZ";’hl(l)(kr) + ErhI(Z) (kr) = re’é’(cos dyi(kr) — sin o;my(kr))
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Computing the phase shift

e Equating 3; with the outside log solution (at r = RT):

8 = ru;(r) i cos 0yj;(kR) — sin ;m;(kR)
: ul(r) r=R+ COS 5U[(kR) — sin 51n1(kR)

o After some algebra, we arrive at an expression for the phase shift

kR nj(kR) — (51 — 1) m(kR)
cot 0;(k) = kRj;(kR) — (B — 1) ji(kR)

e This is an analytic expression to calculate the /-th partial wave phase-shift d;(k) (provided we
know the inside solution to compute the constant [3;)

@ We will use this result later when we introduce the numerical procedure
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Low-energy limit
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Low-energy limit

@ What is the low-energy limit?

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 29/121
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Low-energy limit

What is the low-energy limit?

Naively, we could think simply £ — 0 (or k — 0)

The particle has a reduced wavelength XA = % = %: A — oowhenk — 0

However, X can be finite as long as it is much larger than all other length scales in the system
The only other length scale is the potential range R

We want X > R. The oscillations are so long that they cannot “see” the details of the potential

In terms of k and R, the low-energy limit is

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 29/121
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Low-energy limit

@ The radial equation for a partial wave /:

R R
2m dr? 2m  r?

w(r) = Eu(r)

@ We define an effective potential for the /-th partial wave as:
B2 114 1)
Veff(r) = V(r) ar % r2

For [ # 0, we a have repulsive centrifugal barrier
Low-energy limit kR < 1: the particle cannot overcome the centrifugal barrier

In this case, the partial waves with / > 0 are unimportant

[ = 0 is the key for understanding low-energy scattering
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Quantum scat y Numerical Procedure Examples Formal scattering theory

s-wave scattering

@ In the low-energy scenario, we consider partial waves with [ # 0 to vanish, and the resulting
[ = 0 term is referred to as “s-wave”

@ The s-wave radial component ug(r) is given by:

uo(r)

Ao(r) = = €% (cos 8gjo (kr) — sin dong (kr)) = €'® [klr sin(kr + 50)]
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s-wave scattering

@ We can also solve the zero-energy (k — 0) Schrodinger’s equation for r > R:

0
0
d? 0 11+
Lok D =0

We simply have u;(r) = 0 (easiest Schrodinger’s equation ever!)
The solution can be written as uo(r) = c(r — a)
Its logarithmic derivative is

ug(r) 1

up(r) r—a

@ This needs to be equal to the logarithmic derivative of u(r):
1

kcot(kr + o) =
r—a
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Scattering length

@ In the limit K — O (and setting » = 0) we define the scattering length a
lim k cot & (k) !
co = ——
i a

@ Previously, we had reduced the scattering problem to calculating d;(k)

@ Now we have reduced the problem even further: in the E ~ 0 limit, a encodes all the
information we need about scattering

@ The scattering amplitude for / = 0 in the low-energy limit is:

1
klg(l) kcotdy — ik

fo(k)

—a
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Quantum scattering theory

Scattering length

e Geometrical interpretation: choose ¢ = —1/a in up(r) = c¢(r — a):

-
=1-=
uo(r) .

@ a is simply the intercept of the outside wave function with the x-axis

u(r) up(7 ug(r

ug(r

() >
— uo(r) — ulr) Vi) >0

V() <0 =

< a—> R’ r

Vir)y<0
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The effective range
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The effective range

Another name for the scattering length expansion is the zero-range expansion

What happens if the range of the potential is small, but non-negligible?

("]
(]
@ Expansion of k cot dy(k) in powers of k (so far we have the first term, —1/a)
@ kcot dp(k) is an even function: it can only contain even powers of k

°

The result is: . ;
k cot 0o (k) = —— Erokz + Ok

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 36/121
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The effective range

o Consider a different normalization for uo(r > R):
uo(r > R) = cot do(k) sin(kr) + cos(kr)

@ Let us take the / = 0 radial equation for two different wave functions u, (r) and uy, (r),
labeled by their wave vectors (k; = v/2mE; /h and ky = \/2mE, /h):

i (r) = U(r)ug, (r) + Kfug (r) = 0
i (r) = U(r)ug, (r) + Kug, (r) = 0
@ Next, we multiply the first equation by u;, and the second by u;, and take their difference

i (P, (r) — g (g, (r) = (k3 — k3 )uag, (r)oagy ()

@ We may write the LHS as
" " o / !
i (r)uagy (r) — ey (r)ude, (r) = — [ut (r)uagy (r) — s, (r)ag (r)]
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The effective range

@ Now we integrate from O to R

R
[y (Yt (r) =, (P)uaiy ()] g = (K — i) /0 dr g, (r)ug, (r)

e The integral converges since ug(r) = rAo(r) is finite at the origin (19(0) = 0 independently of
the energy)

@ Next, we repeat the same procedure for the free-particle (V = 0) radial equation with
solutions denoted by g, (r) and g, (r). The result is the same if we replace u by g
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The effective range

Finally, we take the difference between the results
R R
(81, (1) 8k, (1) — 8k, (D)8, ()] g — [ty (Pt (1) — e, (P)ag ()] 5 =
R

(k5 — k) 418k ()i (1) — e () ()]

up(0) =0
g(r) and u(r > R) are equal for r > R
The free-particle solution is also given by: g(r) = cot do(k) sin(kr) + cos(kr)

Then we are left with
R
&k, (0)gx, (0) — g, (0)21, (0) = (k5 — k) /0 dr [gk, (r)8k, (r) — uk, (r)uk, (r)]

An introduction to low-energy scattering in quantum mechanics Lucas Madeira
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The effective range

@ Using g(r) = cot d(k) sin(kr) + cos(kr) in the RHS

ka cot 8o (ka) — ky cot do(k1) = (k3 — k?) /OR dr [k, (7)8ky (1) — i, (r)uagey ()]

o If we take the limit k; — 0, we can write k; cot dg(k;) in terms of the scattering length

R
k cot 8o (k) = —é + K /0 dr [go(r)gr(r) — uo(r)u(r)]

@ We define the next term ry/2 as

o=t o0 =2 [ arlgi)— =2 [ ar [(1- 1) -0

@ 1y is called effective range

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 40/ 121
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Shape-independent approximation

@ The resultant expression is the shape-independent approximation:

11
kot do(k) = —— + Er01<2 + O(k*)

@ We are describing the phase shift dy(k) without taking into account the microscopic
parameters of the scattering potential
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Bound states
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Bound states

@ Let us rewrite the scattered wave function for r — oo as

ek e—i(kr—lTr)

ar; er 2l+

r

e For / = 0 and large distances, the radial wave function is proportional to

ikr —ikr
e e
S
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Bound states

e For an arbitrary finite-ranged potential V, the radial solution at » > R for a bound state
(E < 0) obeys
2mE
u’(r) = — u(r) =k

@ The solution can be written as

N
<

—~
~

~—
X
Il

0
u(r > R) = Ae™+ Be™ ™"
@ We conclude that the radial function for a bound state at large distances is

A(r) = u(:) x Q:r (large r)

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 447121
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Bound states

@ Scattering solution @ Bound state solution
eikr e~ ikr e i
So(k)— —
o(k) r r r

@ By substituting k — ix, with k purely imaginary, we can connect the bound state with the

scattered solution
ek ei(in)r e

r r r
@ Sp(k) controls the ratio of the outgoing to the incoming wave

e In the bound state case, we have only the outgoing spherical wave, thus So(k) — oo
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Bound states

o Si(k) = 1 + 2ikfi(k) = €**®) is a complex function
@ So(k) — oo by substituting k — ix means it has a pole at k = ix

Imk

ik

0] Rek

@ Scattering continuum: real k > 0

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 46/ 121
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Bound states

In terms of the s-wave scattering amplitude f(k)

1 1
k = =
folk) = ot — ik —1/a— ik

e We write Sy(k) as

—k—i/a
So(k) = 1+ 2ikfo(k) = ————
o(k) =1+ 2ikfo (k) k—i/a
@ This expression has a pole at k = i« if we identify
1
B==
a
@ In the zero-energy limit, the energy of a bound state and the scattering length are connected
simply by D PN e
E = = — - —
2m 2m 2ma?
@ A single parameter originated from the potential determines the bound-state energy
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Two-body scattering
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Two-body scattering

@ So far, we considered only the problem of a single particle being scattered by a finite-ranged
potential V(r) located at r = 0

@ With a few modifications, we can use the results we obtained to describe two particles
interacting through a pairwise potential which depends only on their spatial separation r

@ The Hamiltonian of a two-body system is separable in the center of mass (CM) and relative

coordinates: ) )
h h
2 7V%2 + V(l‘l — 1’2)

H =
2my

2m;

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 49/121
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Two-body scattering

@ We define the CM and relative coordinates
miry + mor
R:% and r=r;—n

@ H is now separable

H = HCM +Hr7

h? 2
Hyv = —=—
M o VR
h? 2
Hr = —Tlnrvr+V(l")

m, = mymy/(m; + my) is the reduced mass

The CM motion satisfies the free-particle equation — only adds a constant to the total energy
The relative motion Hamiltonian is exactly the one we used for one particle if

We can apply our previous results to two-body scattering

An introduction to low-energy scattering in quantum mechanics Lucas Madeira 50/ 121
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Applications
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Applications

@ Spherically symmetric finite well
o Analytical calculation of the s-wave scattering wave function

@ Scattering states (£ > 0)
@® Bound states (E < 0)

e Calculation of the scattering length and effective range
© Zero-range and finite-range approximations
o Estimating bound state energies using the scattering length and effective range expansions
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Spherically-symmetric finite well

One way of defining the spherical well is

Veor) —Vo for r < R,
sl — 0 for r > R.

Vo has units of [energy]

e For numerical applications, it is useful to redefine the potential as
h2
—V for r <R,
vi)=<{ "mR?
0 for r > R.

v is dimensionless and related to the depth. We consider only vy > 0 (attractive potential)
R is the range of the potential

For a relatively shallow or short-ranged potential: only continuum scattering states (£ > 0)
Increasing its depth or range may make it strong enough to produce a bound state (£ < 0)
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Spherically-symmetric well (£ > 0)

@ Potential

for r <R,

0 for r > R.

<d2 21\ () + 2’"’15) u(r) = 0

@ E > 0O case

arr h?
@ Equations for r < Rand r > R:

u"(r) + (kg + k) u(r) =0 forr <R,
u"(r) + Ku(r) =0 forr > R,

o k* =2m,E/h* and k3 = 2v(/R*
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Spherically-symmetric well (£ > 0)

o If r <R
u(r) = Asin <\/k2+k(2) r> + Bcos <\/k2+k(2) r)

@ Since up(0) =0, weset B=0

o Ifr >R
u(r) = cot do(k) sin(kr) + cos(kr)

@ Hence, the solution is of the form

Asin(,/kz—i-k%r) for r <R,
u(r) =

cot 0g (k) sin(kr) + cos(kr) for r > R.
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Spherically-symmetric well (£ > 0)

e Logarithmic derivative at r = R~ and r = R

e e

\/ &% + kg cos (\/ k2 + kg R) _ kcot 8o(k) cos(kR) — ksin(kR)
sin ( m R) ~ cot &o(k) sin(kR) + cos(kR)
@ Solving for the phase shift dy(k) without any approximation
ktan (/K2 + i3 R)
\/ K2+ kG
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Spherically-symmetric well (£ > 0)

@ Scattering length
o To calculate the scattering length a, we need to take the k — 0 limit
e Rearrange the log derivative so that we collect factors of k cot 6 (k)
o Keep track of the orders employed in the approximation

cos(kR) = 1+ O(k*)
sin(kR) = kR+ O(K)

@ Repeating last slides’ equation:

\V k2 + ki cos (\/ k2 + kg R) _ kcot 0g(k) cos(kR) — ksin(kR)
sin ( /2 + K2 R) cot do(k) sin(kR) + cos(kR)

o Taking the £k — 0 limit:
—1/a
\kgeot (\/KGR | = ————
°C°< °) —Rja+1
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Numeric Exa

Spherically-symmetric well (£ > 0)

@ Solving for a:

N

@ It is clear that a depends only on the parameters of the potential (depth vy and range R)
e Note that tan(x) — oo forx = 5 +nm, n=0,%1,£2,...

@ So the first divergence (n = 0) of a appears at

2

V():?
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Spherically-symmetric well (£ < 0)

@ E < (case
@ Repeat the same procedure or — E = Rk 2m, = —h*K?/2m,

>  2m, 2m,

@ Solution for u(r)

u(r) = A’ sin (\/k%—/# r) for r <R,

Ble™r" forr > R

@ Match the logarithmic derivatives at r = R:

\/k(%—K,zCOS (,/k%—/#R) _jee—"R

sin (1 /k% — K2 R) e R
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Spherically-symmetric well (£ < 0)

o After some manipulations:

k(z)—ﬁ2
tan(ﬂk(z)—/ﬁzR) + X =0
K

@ This is a transcendental equation that shows where the bound-state energies are located

@ Note that the term 4 /k(z) — K?/k is always positive

@ tan (1 /k% — K2 R) must be negative if we want the equation to have solution(s). That is to

say:
g+n7r< \k—K*R<m+nm, n=0,12,..
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Spherically-symmetric well (£ < 0)

@ The first bound state is n = 0:
s ) , T
>R <2\ /kj— K=< R
® ko > \/kj — K?
° ko = v/2vo/R
2
vy > ?
@ This result shows that there are no bound states if v is not above a certain threshold value
@ This is the same threshold value that makes |a| — oo
@ The conclusion is that the scattering length diverges when a bound state appears
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1 bound state!] 2 bound states| bound

bound
v 2vg

state

@ a diverges for:

V2v =7/2+nm (n=0,1,2,...)

@ This coincides with the location of the
bound states

T T N S ——
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Spherically-symmetric well - effective range

e First, we need to determine the normalization constant of the scattering solution
Asin(\/kz—kkgr) for r <R,
u(r) =
cot 0o (k) sin(kr) + cos(kr) forr > R

@ To determine the constant A, we impose the continuity of u(r) at r = R:

cot do(k) sin(kR) + cos(kR)

sin <\ (k2 + k%R)

A=
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Spherically-symmetric well - effective range

@ The normalized solution is written as

cot 8o (k) sin(kR)+cos(kR) . 9 )
u(r) = sG/ergr) (Ve +8r) forr<r,
cot 0 (k) sin(kr) + cos(kr) forr > R.

@ The effective range is defined in the k — 0 limit of u(r):

(1=R/a) _.
lim u(r) = { SmGoR) sin(kor) forr <R,
. I —r/a for r > R.
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Spherically-symmetric well - effective range

@ The effective range is given by the integral

o

@ Replacing a in favor of R and ko:

@ . 1 l k()R 2 + 1
R 3 \ tan(koR) — koR koR tan(koR) — (koR)?

@ This shows that ry also depends only on parameters of the potential
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Quantum scattering theory

Spherically-symmetric well - effective range

o _(p_ L kRN !
R 3 \tan(koR) — koR koR tan(koR) — (koR)2
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Applications

@ Spherically symmetric finite well
e Analytical calculation of the s-wave scattering wave function

@ Scattering states (E > 0)
©® Bound states (E < 0)

e Calculation of the scattering length and effective range
© Zero-range and finite-range approximations
o Estimating bound state energies using the scattering length and effective range expansions
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Zero-range and finite-range approximations

@ The equation derived in the bound states slide allows us to estimate the bound state energy
with the zero-range approximation x = 1/a,

e R

2m, 2m,a?

E, =

o To take the effective range into account, we write the s-wave scattering amplitude as

1 1
folk) = kcot dg(k) — ik~ —1/a+ rok?/2 — ik

e And Sy(k) as

, —i/a — k+ irgk®/2
So(k) = 1+ 2ikfy(k) =

olk) = 1+ 2ikfo(k) = = 75 2 2

@ Making k — ik
—1/a— Kk — rgk?/2
So(k) = / - 2/
—1/a+ Kk — ryk?/2
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Numeric

@ which yields the solutions

1 2
m:<1$ 1_”0)
ro a

e Forry/a < 1: kro=1F /1 —2rg/a~1F1+ry/a

@ Now choosing the appropriate root to compute the bound state energy

2
R R 2
Ep=—r = Ry -

2m, 2m,ry a
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Zero-range and finite-range approximations

e Example: Helium dimer
e E; = —1.62 mK (found solving the full Schrodinger equation), a = 90.4 A, ry = 8.0 A

@ Zero-range approximation

E., h?
Br M _148mK (92
ks g m (927%)

@ Finite-range approximation

2
Efr ﬁz 27‘0
4 =———— - [1—4/1——] =-1.63mK 101%
kg kg % 2mrr(2) ( a ) m ( 0)

@ Both the zero- and finite-range results successfully describe the physical system because
kR ~ 0.1
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Zero-range and finite-range approximations

Example: Deuteron
o Eyjct = —2.224MeV, a = 5.4112 fm, ry = 1.7436 fm.

@ Zero-range approximation

h2c?
E,c* = —5,—3 = — 1416 MeV (64%)
m,a

o Finite-range approximation

2

hc? 2

Epd = ———— (1 —4/1- ”’) = 2223MeV  (100%)
2m,ry a

The range of the potential needed to be taken into account because kR ~ 0.4

We should emphasize that the scales are very different in both examples

“He dimer: spatial scale of A (10~ m) and the energy is of the order of 10~7 eV

Deuteron: the lengths are in femtometers (10> m) and the energy is of a few MeV (10° eV)
This exemplifies how universal are these low-energy scattering results
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Numerical Procedure
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Numerical Procedure

@ Analytical expressions for the low-energy scattering parameters are only available for a few
potentials

@ Even in those cases, the calculations may be cumbersome, as we saw for the spherical well

@ In general, we need to calculate a and ry numerically
@ We will describe two methods to solve Schrodinger’s equation numerically

@ Second-order central difference
@ Numerov’s method
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Numerical Procedure

@ We wish to compute the quantities a and ry
@ To do so, we need to compute the radial solution inside and outside the potential range

e up(r < R): needs to be computed numerically
o ug(r>R)=1—r/a
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Quantur ory Numerical Procedure

@ Consider the function u(r) on a discrete set of points r; = iAr,i =0,1,2...,N and Ar < 1
@ Let us take two Taylor expansions of u(r) around the points r + Ar

r 2 r 3

u(r + Ar) = u(r) + (Ar)d' (r) + (Az) u” (r) + (A6)u"'(r) +e
r 2 r 3

u(r — Ar) = u(r) — (Ar)d'(r) + (Az) u”(r) — (A6) u"(r) + -

o The difference of the two Taylor expansions yields an expression for the first derivative, while
their sum results in the second derivative

du Uil — Ui 2
ar|,_,. B 2Ar +Ol(Ar)]
d*u Ui — 2u; +ui—q )
g - A
ar|._, @ T ola]

e Note: hereafter, we are going to use the compact notation uo(r;) = u;
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Second-order central difference

@ We want to solve the zero-energy Schrodinger equation inside the potential range

> 2m,
[drz — th(r)] up(r) =0
@ o Uip1 = 2ui +uiy
dr?|,_, (Ar)?

@ Substituting the central difference second derivative into u”(r)

2m,(Ar)?

ﬁz V(F,‘)u,‘

Uir1 = 214,' — U1+
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Second-order central difference

2m,(Ar)?

h2 V(ri)u,-

Wit1 = 2u; — ui—y +

o If we know the value of the radial solution for two consecutive points (#;—; and u;) we can
calculate the value for the next point u;
e u(0)=0
o u(Ar)=1
@ This choice allows us to find a solution without worrying about the normalization
o Algorithm:
Q@ Setug=0,u; =1,andi =1
© Compute u;
@ Ifr;, > R+ Ar, stop. Else, increment i by one
© Gotostep?2
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Numerov’s method

@ The second-order central difference is one possible discretization for a numerical second
derivative

@ There are other alternatives if we want to improve the precision of our algorithm

e Numerov’s method is a numerical technique capable of solving differential equations of
second order when the first-order term is not present:

&y
dx?

= —£(x)y(x) + s(x)
@ The s-wave zero-energy radial equation is of this form, withy — u, x — r, s = 0, and

2m,

f(i‘): 2 V(I’)
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Numerov’s method

@ The method provides a solution of the form

5(Ax)? Ax)?
Vil = (Alx {2)’1' <1 - (12x) §i> = Yi-1 <1 + ( 1;) . >
(o)

+ %(&41 + 10s; + Si—l)} +O[(Ax)°]

12

@ The algorithm is mostly unchanged if we use Numerov’s method instead of the second-order
central difference
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Dimensionless quantities

Schrodinger’s equation contains relatively small quantities
e h~107*Js(or ~ 10~ eV s)
o Typical masses, length, and energy scales are also small

We wish to make Schrodinger’s equation dimensionless

Instead of this )
1d my m,
we want to solve this
L v ag) =0
2 dr2 M=

:erI”
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Dimensionless quantities

e First, we choose a length scale /
e The convenient value of ¢ depends on the system under study
o Atomic physics: 1 A
o Nuclear physics: 1 fm
e Or any other length scale that makes sense for a particular problem

@ Then the dimensionless scaled distance is
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Dimensionless quantities

@ The second derivative becomes

1 d
dr2 = (2 dp?
@ Going back to the equation:
e d*u
———— + V(r)u = Eu
@ V(e =Ei
@ We can also define an energy scale 32
€= m 02
@ And now we define the dimensionless energy and potential
- E _ V
E=— V=-—
€ €
o Finally
Vd*u .
*Eﬁ + V(I")M = Fu
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Scattering length and effective range

e After finding u(r) numerically, we’re ready to compute a and r
@ Scattering length
e We recall that logarithmic derivative of the wave function outside the potential range is given by

r=Rt R—a

o This should be equal to the logarithmic derivative of uy(r) at r = R~

g(r)|,_p+ R—a uo(r) |,_p-

e We already have u(R) and u(R &+ Ar). Thus the derivative may be computed as

_ du(r)

;um(R) — dr = u(R + Ar) B M(R - Ar)

2Ar

r=R
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Scattering length and effective range

@ Scattering length
e Solving for a

2Ar u(R)
u(R+ Ar) — u(R — Ar)
e This expression depends on the ratio of the radial solution, so we ignored the normalization
o Effective range

e On the other hand, the effective range assumes a particular normalization choice
e We multiply u(r) by a constant C such that

_&(R) _ (1-R/a)

~ u(R) u(R)

o The effective range is found by computing the integral

a=R

ro=2 / dr [g3(r) — 1B ()]
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Quantum s y Numerical Procedure “xample: Formal scatte

Numerical integration

o The task is essentially to compute numerically an integral of the form
XN
I= / f(x)dx
X1

@ f(x) is known only at a discrete set of equally spaced points, f(x;) = f;, where
i=1,2,3,...,N.

—| h |
L A d L4 L d L d L A d ®
Xp X1 X2 P XN XN +1
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Numerical integration

@ Trapezoidal rule:

/xzf(x)dx =h [;fl + ;fz] + O(R*f")

@ Using it N — 1 times for the intervals: (x1,x2), (x2,x3), -+, (Xn—1,XN)

(xn —x1)3f”>

/x;‘fo(x)dx =h [;fl +hHh+fd o+ ;f]\/:| + O ( 2
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Numerical integration

@ Simpson’s rule:

/X3f(X)dx =h |:;f1 + gfz + ;ﬁ} + 0 fW)

x1
@ Repeatedly:

w 1 4 2 4 2 4 1 — x1)%f@
/xl f(x)dx =h [3f1 + gfz + §f3 + §f4 +---+ ng—z + ng—l + 3fN:| +0 (W)
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Examples

Examples

@ We chose four potentials to illustrate the numerical procedure
e Spherical well
e Modified Poschl-Teller
o Gaussian
e Lennard-Jones

40 1
71 -
20
=2 = 0
—31 —20 1
— Well
—— Pdschl-Teller
—4 1 —— Gaussian —401 —— Lennard-Jones
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
riro /o
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Potentials - Spherical well

o To make the comparison with other potentials easier, we redefine

h2 2
—Vsw MSW, for r < R,
Vew(r) = my

0, forr > R

@ v,y is a dimensionless parameter related to the depth

® ugw =1/R

@ We can compare our numerical solutions with the analytical ones to check the correctness of
the program
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Potentials - Modified Poschl-Teller (mPT)

hZ 2
Ver(r) = *VPT*ﬁ
my cosh? (puprr)

Very difficult analytical solution for the eigenfunctions

There is an analytical expression for a in terms of the parameters of the potential

A
appr = gcot <7T2> +v 4+ ¥(A)

vpr = A(A — 1)/2, v is the Euler-Mascheroni constant and W is the digamma function
The |a| — oo case corresponds to A = 2 [cot(m) diverges] or A = —1 [W(—1) diverges], that
iS, VPT = 1
For this particular case (|a| — 00), the s-wave zero-energy radial function takes a relatively
simple form
wo(r) = tanh(upr r)
tanh( UPT R)
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Potentials - mPT

@ We can also calculate the effective range by performing the integral
e In this case (|a| — 00), go(r) =1 —r/a =1, so that

R 2

tanh
ro = 2/ dr |1 — 7an Z(MPTr)
0 tanh (/IJPTR)

1
R— 4+
|: tanh2 (/LPTR) HUPT tanh (NPTR)

@ Since 1/upr ~ R and the tanh(x) function converges rapidly to 1 as we increase x, we may
set tanh(puprR) = 1. Thus we have :

2
ro = — (fOI‘ VPT = 1)
upT
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Potentials

0_
@ Spherical well L~
@ Modified Poschl-Teller 14 /
h2 2
Ver(r) = —ver - — P o]
m; cosh”(uprr) o~
@ Gaussian —3
— Well
R, e —— Pischl-Teller
Vg(r) = Vg ;Mée He —4 — Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
riro

@ The potential range R is not well defined for the mPT and the gaussian potentials
e Look for a value of R such that the potential is negligible |[V(R)| <
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Potentials

@ Lennard-Jones

hz Cin Ce 40
Vul) = -2 ~ %%
" 204
. . 0
@ Note that V;(0) diverges and V(Ar) is very large
o u(0)=0v —0
e Computing u(Ar) may lead to instabilities —104 —
o Define arange 0 < r < ry where u(r) =0 : : : =
o Start the integration at r = rpi, 00 05 LD L2025 30
/T
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Tuning the parameters
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Tuning the parameters

@ The four potentials we presented have two parameters
@ Spherical well, mPT, Gaussian are purely attractive

e one parameter is associated with the depth of the potential (vsy, vpr, and vy)
o and another with its range (tsw, fipT, and fig)

@ The LJ potential has a repulsive core and an attractive region
o (¢ controls the attractive interaction
e Cj, controls the repulsive interaction

o Typically, the scattering length and effective range are known, and we want to tune the
parameters of a particular potential to reproduce the desired a and ry values

@ Since we want to match two values and have two free parameters, the correspondence is
one-to-one (with the restriction of how many bound states we want)
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Tuning the parameters

@ A possible algorithm:

Start with a guess (vq, v2).
Compute a and ry

Keep v, fixed. Vary v; until a has the desired value. Increasing the depth of the potential will
decrease the value of the scattering length (until it diverges and changes from —oo to 4-00)

Keep v, fixed at the value found in step 3. Vary v, until ry has the desired value. Increasing
the range of the potential will increase ry

© ©6 o000

If a and ry match the desired values, stop. Else, go to step 3 and use the value of v, found in
step 4
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Results
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Results

@ We present 3 cases: a < 0, |a| — oo, and a > 0, which correspond to three very distinct
physical situations
ea<0
o Example: neutron-neutron interaction (@ = —18.5 fm, ry = 2.7 fm)
@ |a| — oo
o Unitarity
ea>0
o Example: deuteron (a = 5.4 fm, ro = 1.7 fm)

System a (fm) ry (fm)
Neutron-neutron —18.5 2.7
Unitarity Fo00 1.0
Deuteron 54 1.7
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Examples

Results

ea<0
1.2
Potential % I (fm~1) a(@fm) ry(fm) L0
Neutron-neutron e
Well 1.1096  0.3918 —18.52 2.7 lg
mPT 09071 07991 —18.51 2.7 =" [
Gaussian  1.2121  0.5672  —18.55 2.7 044 —— Péschl.Teller
—— Caussian
0.2 7 = Lennard-Jones
—==- Analytical solution
00 T T T T
0 1 2 3 4
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Results

@ |a| —» o0

1.0 4
o =1l
Potential Y p(Em™") a(m) ry(fm) 084
Unitarity &
Well 1.2337  1.0000 ~ —10° 1.0 =06
mPT  1.0000 20000 ~10° 1.0 = —
Gaussian  1.3420 1.4349 ~ —10° 1.0 N —— Pisch]- Teller
0.2 —— Gaussian
= Lennard-Jones
===-Analytical solution
00 h T T T T T T
0.0 0.5 10 15 2.0 2.5
r [fm
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Results

ea>0
1.2
— VVel]
04 e P ischl-Teller
Potential v p(fm=1)  a(fm) ry(fm) — G
Deuteron 5081 - Analytical solution
Well 17575 05000 54 170 = g
mPT 1.4388 0.8631 5.4 1.73 =
Gaussian 1.9102 0.6754 54  1.70 -
0.24
0.04 . . . . .
0 1 2 3 4 h [}
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Results

@ Scattering length as a function of the strength of the attractive potential

100 10 T
1
1
i
i
504 = i
i
1
i
S g IS——— !
— 0+ = 0 [

] S i
|
—50 4 — Caussian 5 i
-— el i
@ Poschl-Teller |

—-=Analytical solution ! e |ennard-Jones

—100 T T T —10 T T — T T
0.0 0.5 1.0 15 20 25 0.0 0.1 0.2 033 0.4 0.5
v Cs/(ro)
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Conclusions

@ We presented quantum scattering theory fundamentals focusing on the low-energy limit

@ In this context, we introduced two significant quantities: the scattering length and the
effective range

o To illustrate how these two parameters behave in a concrete example, we derived analytical
expressions for the spherical well

@ We also showed how the energy of a bound state could be calculated using zero- and
finite-range expressions applied to a *He dimer and the deuteron

@ We described a numerical procedure that can be used to compute the scattering length and
effective range of any spherically symmetric finite-ranged two-body potential

o Examples: spherical well, modified Poschl-Teller, Gaussian, and Lennard-Jones potentials

@ Now, you can extend what you learned to your choice of physical systems, and apply the
method to other potentials
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Formal scattering theory
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Time-dependent formalism

Scattering can be seen as a time-dependent process

Interactions — interaction picture

@ Time evolution in the Schrédinger picture:
19(1))s = Us(t,t0)|6(t0))s

| )s is a ket in the Schrodinger picture and Us(t, 1p) is the time-evolution operator
—iH(t—19)/h

If H is time independent: Ug(t, 1)) = e

The interaction-picture state ket is defined as:
[6(0)1 = &"07P6(1) s
@ The operators in the interaction picture are defined as:

— iH()l/ﬁ —iH()l/h
A[ e Age
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The interaction picture

The Schrodinger equation takes the form:
., 0 . 0
o lo)s = HIBW)s = i |60 = Vilé(®):

V; = etfoli=t0)/hyp—iHo(t=10)/h jg the potential in the interaction picture
Advantage: we removed Hj from our calculations (to consider the interaction)
If V.= 0: |¢(z)); is constant in time (and equal to |p(zp))s)
The time-evolution of |4(2)); is given by:

16(1))1 = Up(t, 10)|(t0) )1 with Uy (2, 1) = ™0 "Ug(1, 19) e Holo/

It obeys the Schrodinger-like equation:

0
zh&Ul(t, to) = Vi(t)Us(t, 1)
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Scattering and the interaction picture

0
lh& Ul(t7 t()) = Vl(t) Ul (t7 t())

The solution is given by:

.t
Uit0) = 1= 5 [ atvi)ui(t, o)
to
Compatible with the initial condition U;(y, o) = 1.

Our goal: to calculate the evolution of the state in a distant past (fp — —o0), when
|p(t = —o0)) = [i)

The solution is only valid for finite times 7 and #y — setting U;(¢, —oo) would lead to
convergence problems

We need to give mathematical meaning to U;(z, —oo) and U;(+o0, t)
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Distant past and distant future

o Consider the equality:

0
lim f(to) —111%6/ dr e f (1)

th—>—00 — 59

@ Applying this to the time evolution operator:

0
Ui(t,—c0) = lim Uj(t,to) :lime/ di' ¢ Uy(1,7)

thy——00 e—0 —69

e—0

+oo
U1(—|—oo,t0) hm U](t l()) = hme/ df e U](l/,l())
0
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Quantum scattering theory Numerical Procedure

o Despite the time-dependent treatment, H is time-independent: Us(t,') = e~ H(=1)/h

o The state vector at a time ¢ = 0 is given by:

0
|9(t = 0))1 = Uy (0, —00)|i) with Ur(0, —o00) = lime/ dr e et /hg—iHot' /1
—0o0

e—0

0 .
= — 13 / Et l(H*El‘)t//h L
|p(t = 0)); lgl(l)e/oodt i) = }:%E H+ze| i)

@ Using the identity:
1 1 B 1 v 1
E;—H+ie E;—Hy+ic E;—Hy+ie E —H+ie

@ we rewrite the result as:

ie 1 i€
t=0); = Il I 4 -
l€ y 1
= lim i) + —V]p(t=10));

e—0 E; — Hy + i€ E; — Hy + ic
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The Lippmann-Schwinger equation

i€ 1 i€
t=0)); = li ' 4 .
[ 2 30 E; — Ho+l6|>+Ei_H0+i5 Ei—H+i€’l>
i€ . 1
= lim | > + ; V’d)(t = 0)>1

e—0 E; — Hy + i€ E; — Hy + ie

o H()‘l> = El’l>

1

) = i) + mww

e We left off the notation |¢(r = 0)) to emphasize that this is an actual time-independent
problem
@ This is know as the Lippmann-Schwinger equation
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The distant future

@ Back to the time-dependent formulation, we can use the sequential relation of the time
translation operator: U;(t, 1) = U;(t,¢)U; (7, 19)

|9(1)) = Ui(#,0)|$(0)) = Ui(t, —o0)[i)
@ In a distant future (r — +00):

If) = Ur(+00, —0)[i) = S|i),  § = Ui(400, —00).

@ Scattering (S) matrix

@ The action of the S matrix on an initial state (that exists asymptotically for #p — —o0)
transforms the ket |i) into a final state that exists in a distant future t — 400
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Dyson series and the first-order Born approximation

1
o Li -Schwi tion: =i —V
ippmann-Schwinger equation: |¢) = |i) + B Hoti |[4)
@ Rewritten as a power-series expansion:
[©) =|i) + GLVI]i) + GLVGLV]i) + ... = |i) + GL(V + VGV + ..)|i)

e where G, = (E; — Hy + ie)™!
@ We define the transition matrix 7" as the perturbative series:

@ This is known as the Dyson series

@ A consequence is that: .
VIy) = Tli)
@ The 7T-matrix is a kind of a generalized potential
e First-order perturbation: 7 and V are equivalent — ) = |i)
@ This is known as the first-order Born approximation
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Scattering theory integral equations

1
E; — Hy + ie

Lippmann-Schwinger equation: |¢)) = |i) + V)

@ In the position basis:

(e = (rli) + / & (r |G| (' [V] )
1

G / = /
+rr) <r E— Hoy + ic r>

Momentum basis {|k)} elements are eigenstates of Hy with eigenvalues A°k>/2m

We have to compute:

h? 1
G / - k/ k/ k// k// /
) = 3 S0 (K | K ) )
7 ik-r e—ik-r
e Plane waves in the position representation: (r|k) = B and (k|r) = S5
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We absorbed the factor 2m/h? into €

We are left with a sum in k-space: discrete

Periodic boundary conditions: k; = 27n; /L (i = x,y,z) where n; = 0,1,2,3...

{k} ={0,2n/L,4n/L,...}: the distance between each point in k-space is Ak = 27 /L

We must take L — oo to guarantee the required continuous character: the separation between
points must be very small compared to L (Ak = 0)

We may substitute the sum by an integral:

3
%: — / p(k)d*K = ( 2L7r % / d*K’

p(k) = L3/(2m)3 is the k-density in three dimensions
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Scattering theory integral equations

. 1 2 eik’-(rfr )
G = dK —————
+rr) (2m)3 / k> — k" + ie
@ Spherical coordinates: (K, 6, ¢)
@ Let the vector (r — r’) lie along the k. axis: k' - (r — 1) = k’]r —1'|cos b

Gi(r,r') =

1 /oo e /7r ” eik’|r—r’|cos€ / W sm k/|l’ _r |)
(27)2 Jo 0o kK2—Kk?+ie 4772\1‘ — 1| — k"2 + ie
@ The integrand is even
@ Poles at k' = £k + ie = £(k + ie/2k — €2 /8Kk> + ...)

e Ignoring terms higher than € (redefining ¢/2k — ¢):

(k2 — K% +ie) = —(K — k —ie)(K + k + ie)

o The integral is then:

G dk/ (e—zk/|r | _ eik/|r—r/|)
+nr) = smzyr—r/y/ (K —k —ie)(K + k + ie)
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Numerical Procedure

Quantum scattering theory
@ We let k¥’ momentarily be a complex variable to carry out this integration and use the residue

theorem:
f{ :/ +/ =2mi x Y _Res{k';j}
Ir TR CR j

Im k, Im k"
k+ ie
X
C]? l R
Re k'
Tk
R ?

X 'z

—k — i€ &

Upper plane path where e/*I"—*'l — 0 Lower plane path where e~ *I*—"'l —
117/121
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Scattering theory integral equations

The closed path integral may be written as the sum:
f = / +/ =2mi x Y _Res{k';j}
' YR Cr j

The integral along the path ~ is zero due to Jordan’s lemma
The only pole inside T’z is +(k + ie)
The residues may be calculated as:

) ) kleik’\r—r’\ eik\r—r’\
Res{k;k+ic} = lim (K —k—i -
es{k’sk+ e} kfif%ie( ) W_k—i tk+ie - 2
e
K e~ ik [r—1'| eklr—r'|
Res{k'; —k —ie} = i K+k+i =
etk —k—ie} = Mm (KAk+ie) Wkt~ 2

e—0
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o The integral along Cg (the real axis) is:
R k/(efik’\rfrﬂ _ eik’|r7r’\)

R—oo J_p (K —k —ie)(k' + k + i€)

= 2mi x el

@ Going back to the Green’s function:
1 eklr—r|

Gy (r,x') = i [ — 1]

@ And the integral equation:

2 1 ik|r—r’| ,
() = i) = 3 [ P T ¢ V1)
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Scattering theory integral equations

@ Next, we consider the potential to be local:
(r'|vir")y = v —r")

@ Thus:

m eik|r—r’|
R R o L

4r |r — /|
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Scattering theory integral equations

Additional restriction: finite-ranged potential

The scattering is observed far away from the scattering center
Large distances (Jr| > |r'|): e*lF—¥' x gikre=k'r’

Our initial state is |i) = |K) (and (r|k) = ¢/ /L3/?)

Finally:

ikr

Fo1 [
wmw%&lm%M+iﬂmm

where

mL?

e R N

is the scattering amplitude
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